Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
http://ds.knu.edu.ua/jspui/handle/123456789/5505
Назва: | Methodology for teaching development of web-based augmented reality with integrated machine learning models |
Автори: | Semerikov, Serhiy O. Foki, Mykhailo V. Shepiliev, Dmytro S. Mintii, Mykhailo M. Mintii, Iryna S. Kuzminska, Olena H. |
Ключові слова: | web-based augmented reality WebAR machine learning TensorFlow.js Teachable Machine educational technology |
Дата публікації: | 1-лис-2024 |
Видавництво: | CEUR Workshop Proceedings |
Бібліографічний опис: | Semerikov S. O. Methodology for teaching development of web-based augmented reality with integrated machine learning models / Serhiy O. Semerikov, Mykhailo V. Foki, Dmytro S. Shepiliev, Mykhailo M. Mintii, Iryna S. Mintii, Olena H. Kuzminska // Proceedings of the 11th Illia O. Teplytskyi Workshop on Computer Simulation in Education (CoSinE 2024) co-located with XVI International Conference on Mathematics, Science and Technology Education (ICon-MaSTEd 2024). Kryvyi Rih, Ukraine, May 15, 2024 / Edited by: Arnold E. Kiv, Serhiy O. Semerikov, Andrii M. Striuk // CEUR Workshop Proceedings. – 2024. – Vol. 3820. – P. 118-145. – Access mode : https://ceur-ws.org/Vol-3820/paper249.pdf |
Короткий огляд (реферат): | Augmented reality (AR) is an emerging technology with many applications in education. Web-based augmented reality (WebAR) provides a cross-platform approach to deliver immersive learning experiences on mobile devices. Integrating machine learning models into WebAR applications can enable advanced interactive effects by responding to user actions. However, little research exists on effective methodologies to teach students WebAR development with integrated machine learning. This paper proposes a methodology with three main steps: (1) Integrating standard TensorFlow.js models like handpose into WebAR scenes for gestures and interactions; (2) Developing custom image classification models with Teachable Machine and exporting to TensorFlow.js; (3) Modifying WebAR applications to load and use exported custom models, displaying model outputs as augmented reality content. The methodology is designed to incrementally introduce machine learning integration, build an understanding of model training and usage, and spark ideas for using machine learning to augment educational content. The methodology provides a starting point for further research into pedagogical frameworks, assessments, and empirical studies on teaching WebAR development with embedded intelligence. |
Опис: | [1] D. S. Shepiliev, S. O. Semerikov, Y. V. Yechkalo, V. V. Tkachuk, O. M. Markova, Y. O. Modlo, I. S. Mintii, M. M. Mintii, T. V. Selivanova, N. K. Maksyshko, T. A. Vakaliuk, V. V. Osadchyi, R. O. Tarasenko, S. M. Amelina, A. E. Kiv, Development of career guidance quests using WebAR, Journal of Physics: Conference Series 1840 (2021) 012028. URL: https://doi.org/10.1088/1742-6596/1840/1/012028. doi:10.1088/1742-6596/1840/1/012028. [2] D. S. Shepiliev, Y. O. Modlo, Y. V. Yechkalo, V. V. Tkachuk, M. M. Mintii, I. S. Mintii, O. M. Markova, T. V. Selivanova, O. M. Drashko, O. O. Kalinichenko, T. A. Vakaliuk, V. V. Osadchyi, S. O. Semerikov, WebAR development tools: An overview, CEUR Workshop Proceedings 2832 (2020) 84–93. URL: http://ceur-ws.org/Vol-2832/paper12.pdf. [3] O. V. Syrovatskyi, S. O. Semerikov, Y. O. Modlo, Y. V. Yechkalo, S. O. Zelinska, Augmented reality software design for educational purposes, CEUR Workshop Proceedings 2292 (2018) 193–225. URL: http://ceur-ws.org/Vol-2292/paper20.pdf. [4] M. I. Striuk, A. M. Striuk, S. O. Semerikov, Mobility in the information society: a holistic model, Educational Technology Quarterly 2023 (2023) 277–301. URL: https://doi.org/10.55056/etq.619. [5] AR.js Documentation, 2024. URL: https://ar-js-org.github.io/AR.js-Docs/. [6] S. O. Semerikov, M. M. Mintii, I. S. Mintii, Review of the course “Development of Virtual and Augmented Reality Software” for STEM teachers: implementation results and improvement potentials, in: S. H. Lytvynova, S. O. Semerikov (Eds.), Proceedings of the 4th International Workshop on Augmented Reality in Education (AREdu 2021), Kryvyi Rih, Ukraine, May 11, 2021, volume 2898 of CEUR Workshop Proceedings, CEUR-WS.org, 2021, pp. 159–177. URL: http://ceur-ws.org/Vol-2898/paper09.pdf. [7] H. Yuen, HiuKim Yuen, 2023. URL: https://www.youtube.com/channel/UC-JyA1Z1-p0wgxj5WEX56wg/featured. [8] H. Yuen, MindAR, 2023. URL: https://hiukim.github.io/mind-ar-js-doc/. [9] TensorFlow.js | Machine Learning for JavaScript Developers, 2024. URL: https://www.tensorflow.org/js. [10] Centre for Science and Technology Studies, Leiden University, The Netherlands, VOSviewer - Visualizing scientific landscapes, 2024. URL: https://www.vosviewer.com/. [11] V. V. Tkachuk, S. O. Semerikov, Y. V. Yechkalo, O. M. Markova, M. M. Mintii, WebAR development tools: comparative analysis, Physical and Mathematical Education (2020). URL: https://doi.org/10.31110%2F2413-1571-2020-024-2-021. doi:10.31110/2413-1571-2020-024-2-021. [12] J. An, L.-P. Poly, T. A. Holme, Usability testing and the development of an augmented reality application for laboratory learning, Journal of Chemical Education 97 (2020) 97–105. URL: https://doi.org/10.1021/acs.jchemed.9b00453. [13] P. E. Antoniou, E. Dafli, G. Arfaras, P. D. Bamidis, Versatile mixed reality medical educational spaces; requirement analysis from expert users, Personal and Ubiquitous Computing 21 (2017) 1015–1024. URL: https://doi.org/10.1007/s00779-017-1074-5. [14] J. V. Arteaga, M. L. Gravini-Donado, L. D. Z. Riva, Digital technologies for heritage teaching: Trend analysis in new realities, International Journal of Emerging Technologies in Learning 16 (2021) 132–148. URL: https://doi.org/10.3991/ijet.v16i21.25149. [15] T. N. Arvanitis, A. Petrou, J. F. Knight, S. Savas, S. Sotiriou, M. Gargalakos, E. Gialouri, Human factors and qualitative pedagogical evaluation of a mobile augmented reality system for science education used by learners with physical disabilities, Personal and Ubiquitous Computing 13 (2009) 243–250. URL: https://doi.org/10.1007/s00779-007-0187-7. [16] H. T. Atmaca, O. S. Terzi, Building a web-augmented reality application for demonstration of kidney pathology for veterinary education, Polish Journal of Veterinary Sciences 24 (2021) 345–350. URL: https://doi.org/10.24425/pjvs.2021.137671. [17] Y. Baashar, G. Alkawsi, W. N. W. Ahmad, H. Alhussian, A. Alwadain, L. F. Capretz, A. Babiker, A. Alghail, Effectiveness of using augmented reality for training in the medical professions: Meta-analysis, JMIR Serious Games 10 (2022) e32715. URL: https://doi.org/10.2196/32715. [18] K. Bhavika, J. Martin, B. Ardit, Technology will never replace hands on surgical training in plastic surgery, Journal of Plastic, Reconstructive and Aesthetic Surgery 75 (2022) 439–488. URL: https://doi.org/10.1016/j.bjps.2021.11.034. [19] H. M. Bradford, C. L. Farley, M. Escobar, E. T. Heitzler, T. Tringali, K. C. Walker, Rapid curricular innovations during covid-19 clinical suspension: Maintaining student engagement with simulation experiences, Journal of Midwifery and Women’s Health 66 (2021) 366–371. URL: https://doi.org/10.1111/jmwh.13246. [20] A. Brunzini, A. Papetti, E. B. Serrani, M. Scafà, M. Germani, How to Improve Medical Simulation Training: A New Methodology Based on Ergonomic Evaluation, in: W. Karwowski, T. Ahram, S. Nazir (Eds.), Advances in Human Factors in Training, Education, and Learning Sciences, volume 963 of Advances in Intelligent Systems and Computing, Springer International Publishing, Cham, 2020, pp. 145–155. URL: https://doi.org/10.1007/978-3-030-20135-7_14. [21] B. K. Burian, M. Ebnali, J. M. Robertson, D. Musson, C. N. Pozner, T. Doyle, D. S. Smink, C. Miccile, P. Paladugu, B. Atamna, S. Lipsitz, S. Yule, R. . Dias, Using extended reality (xr) for medical training and real-time clinical support during deep space missions, Applied Ergonomics 106 (2023) 103902. URL: https://doi.org/10.1016/j.apergo.2022.103902. [22] I. Coma-Tatay, S. Casas-Yrurzum, P. Casanova-Salas, M. Fernández-Marín, Fi-ar learning: a web-based platform for augmented reality educational content, Multimedia Tools and Applications 78 (2019) 6093–6118. URL: https://doi.org/10.1007/s11042-018-6395-5. [23] F. Cortés Rodríguez, M. Dal Peraro, L. Abriata, Online tools to easily build virtual molecular models for display in augmented and virtual reality on the web, Journal of Molecular Graphics and Modelling 114 (2022) 108164. URL: https://doi.org/10.1016/j.jmgm.2022.108164. [24] T. Coughlin, Impact of covid-19 on the consumer electronics market, IEEE Consumer Electronics Magazine 10 (2021) 58–59. URL: https://doi.org/10.1109/MCE.2020.3016753. [25] P. G. Crandall, R. K. Engler III, D. E. Beck, S. A. Killian, C. A. O’Bryan, N. Jarvis, E. Clausen, Development of an augmented reality game to teach abstract concepts in food chemistry, Journal of Food Science Education 14 (2015) 18–23. URL: https://ift.onlinelibrary.wiley.com/doi/abs/10.1111/1541-4329.12048. doi:https://doi.org/10.1111/1541-4329.12048. arXiv:https://ift.onlinelibrary.wiley.com/doi/pdf/10.1111/1541-4329.12048. [26] S. A. Dar, Mobile library initiatives: a new way to revitalize the academic library settings, Library Hi Tech News 36 (2019) 15–21. URL: https://doi.org/10.1108/LHTN-05-2019-0032. [27] L. Dunkel, L. Fernandez-Luque, S. Loche, M. O. Savage, Digital technologies to improve the precision of paediatric growth disorder diagnosis and management, Growth Hormone and IGF Research 59 (2021) 101408. URL: https://doi.org/10.1016/j.ghir.2021.101408. [28] E. Erçağ, A. Yasakcı, The perception scale for the 7e model-based augmented reality enriched computer course (7emagbaÖ): Validity and reliability study, Sustainability 14 (2022) 12037. URL: https://doi.org/10.3390/su141912037. [29] E. Faridi, A. Ghaderian, F. Honarasa, A. Shafie, Next generation of chemistry and biochemistry conference posters: Animation, augmented reality, visitor statistics, and visitors’ attention, Biochemistry and Molecular Biology Education 49 (2021) 619–624. URL: https://doi.org/10.1002/bmb.21520. [30] S. Farra, E. Hodgson, E. Miller, N. Timm, W. Brady, M. Gneuhs, J. Ying, J. Hausfeld, E. Cosgrove, A. Simon, M. Bottomley, Effects of virtual reality simulation on worker emergency evacuation of neonates, Disaster Medicine and Public Health Preparedness 13 (2019) 301–308. URL: https://doi.org/10.1017/dmp.2018.58. [31] N. Gordon, M. Brayshaw, T. Aljaber, Heuristic Evaluation for Serious Immersive Games and M-instruction, in: P. Zaphiris, A. Ioannou (Eds.), Learning and Collaboration Technologies, volume 9753 of Lecture Notes in Computer Science, Springer International Publishing, Cham, 2016, pp. 310–319. URL: https://doi.org/10.1007/978-3-319-39483-1_29. [32] B. Hensen, I. Koren, R. Klamma, A. Herrler, An augmented reality framework for gamified learning, in: G. Hancke, M. Spaniol, K. Osathanunkul, S. Unankard, R. Klamma (Eds.), Advances in Web-Based Learning – ICWL 2018, volume 11007 of Lecture Notes in Computer Science, Springer International Publishing, Cham, 2018, pp. 67–76. URL: https://doi.org/10.1007/978-3-319-96565-9_7. [33] T. G. Hoog, L. M. Aufdembrink, N. J. Gaut, R.-J. Sung, K. P. Adamala, A. E. Engelhart, Rapid deployment of smartphone-based augmented reality tools for field and online education in structural biology, Biochemistry and Molecular Biology Education 48 (2020) 448–451. URL: https://doi.org/10.1002/bmb.21396. [34] T.-C. Huang, Seeing creativity in an augmented experiential learning environment, Universal Ac- cess in the Information Society 18 (2019) 301–313. URL: https://doi.org/10.1007/s10209-017-0592-2. [35] M. B. Ibáñez, Á. Di Serio, D. Villarán, C. Delgado Kloos, Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness, Computers and Education 71 (2014) 1–13. URL: https://doi.org/10.1016/j.compedu.2013.09.004. [36] M.-B. Ibanez, A. Di-Serio, D. Villaran-Molina, C. Delgado-Kloos, Augmented reality-based simulators as discovery learning tools: An empirical study, IEEE Transactions on Education 58 (2015) 208–213. URL: https://doi.org/10.1109/TE.2014.2379712. [37] M. B. Ibáñez, J. Peláez, C. D. Kloos, Using an Augmented Reality Geolocalized Quiz Game as an Incentive to Overcome Academic Procrastination, in: M. E. Auer, T. Tsiatsos (Eds.), Mobile Technologies and Applications for the Internet of Things, volume 909 of Advances in Intelligent Systems and Computing, Springer International Publishing, Cham, 2019, pp. 175–184. URL: https://doi.org/10.1007/978-3-030-11434-3_21. [38] M. Ibáñez, A. Uriarte Portillo, R. Zatarain Cabada, M. Barrón, Impact of augmented reality technology on academic achievement and motivation of students from public and private mexican schools. a case study in a middle-school geometry course, Computers and Education 145 (2020) 103734. URL: https://doi.org/10.1016/j.compedu.2019.103734. [39] K. Jung, V. Nguyen, S.-C. Yoo, S. Kim, S. Park, M. Currie, Palmitoar: The last battle of the u.s. civil war reenacted using augmented reality, ISPRS International Journal of Geo-Information 9 (2020) 75. URL: https://doi.org/10.3390/ijgi9020075. [40] B. Kang, J. Heo, H. H. S. Choi, K. H. Lee, 2030 toy web of the future, in: S. Kim, J.-W. Jung, N. Kubota (Eds.), Soft Computing in Intelligent Control, volume 272 of Advances in Intelligent Systems and Computing, Springer International Publishing, Cham, 2014, pp. 69–75. URL: https://doi.org/10.1007/978-3-319-05570-1_8. [41] S. I. Karas, E. V. Grakova, M. V. Balakhonova, M. B. Arzhanik, E. E. Kara-Sal, Distance learning in cardiology: The use of multimedia clinical diagnostic tasks, Russian Journal of Cardiology 25 (2020) 187–194. URL: https://doi.org/10.15829/1560-4071-2020-4116. [42] M. Karayilan, S. M. McDonald, A. J. Bahnick, K. M. Godwin, Y. M. Chan, M. L. Becker, Reassessing undergraduate polymer chemistry laboratory experiments for virtual learning environments, Journal of Chemical Education 99 (2022) 1877–1889. URL: https://doi.org/10.1021/acs.jchemed.1c01259. [43] T. Katika, S. N. Bolierakis, E. Vasilopoulos, M. Antonopoulos, G. Tsimiklis, I. Karaseitanidis, A. Amditis, Coupling AR with Object Detection Neural Networks for End-User Engagement, in: G. Zachmann, M. Alcañiz Raya, P. Bourdot, M. Marchal, J. Stefanucci, X. Yang (Eds.), Virtual Reality and Mixed Reality, volume 13484 of Lecture Notes in Computer Science, Springer International Publishing, Cham, 2022, pp. 135–145. URL: https://doi.org/10.1007/978-3-031-16234-3_8. [44] I. Kazanidis, N. Pellas, A. Christopoulos, A learning analytics conceptual framework for augmented reality-supported educational case studies, Multimodal Technologies and Interaction 5 (2021) 9. URL: https://doi.org/10.3390/mti5030009. [45] H. Le, M. Nguyen, An Online Platform for Enhancing Learning Experiences with Web-Based Augmented Reality and Pictorial Bar Code, in: V. Geroimenko (Ed.), Augmented Reality in Education: A New Technology for Teaching and Learning, Springer Series on Cultural Computing, Springer International Publishing, Cham, 2020, pp. 45–57. URL: https://doi.org/10.1007/978-3-030-42156-4_3. doi:10.1007/978-3-030-42156-4_3. [46] E. Liu, S. Cai, Z. Liu, C. Liu, WebART : Web-based augmented reality learning resources authoring tool and its user experience study among teachers, IEEE Transactions on Learning Technologies 16 (2023) 53–65. URL: https://doi.org/10.1109/TLT.2022.3214854. [47] D. Lou, Two fast prototypes of web-based augmented reality enhancement for books, Library Hi Tech News 36 (2019) 19–24. URL: https://doi.org/10.1108/LHTN-08-2019-0057. [48] C. Lytridis, A. Tsinakos, I. Kazanidis, Artutor—an augmented reality platform for interactive distance learning, Education Sciences 8 (2018) 6. URL: https://doi.org/10.3390/educsci8010006. [49] R. Marín, P. J. Sanz, A. P. Del Pobil, The uji online robot: An education and training experience, Autonomous Robots 15 (2003) 283–297. URL: https://doi.org/10.1023/A:1026220621431. [50] D. R. Nemirovsky, A. J. Garcia, P. Gupta, E. Shoen, N. Walia, Evaluation of surgical improvement of clinical knowledge ops (sicko), an interactive training platform, Journal of Digital Imaging 34 (2021) 1067–1071. URL: https://doi.org/10.1007/s10278-021-00482-x. [51] V. T. Nguyen, K. Jung, T. Dang, Blocklyar: A visual programming interface for creating augmented reality experiences, Electronics 9 (2020) 1–20. URL: https://doi.org/10.3390/electronics9081205. [52] S. Brewster, R. Murray-Smith (Eds.), Haptic Human-Computer Interaction: First International Workshop, Glasgow, UK, August 31 - September 1, 2000, Proceedings, volume 2058 of Lecture Notes in Computer Science, Springer-Verlag, Berlin Heidelberg, 2001. URL: https://doi.org/10.1007/3-540-44589-7. doi:10.1007/3-540-44589-7. [53] J. D. Westwood, S. W. Westwood, L. Felländer-Tsai, C. M. Fidopiastis, A. Liu, S. Senger, K. G. Vosburgh (Eds.), Medicine Meets Virtual Reality 22 - NextMed, MMVR 2016, Los Angeles, California, USA, April 7-9, 2016, volume 220 of Studies in Health Technology and Informatics, IOS Press, 2016. URL: http://ebooks.iospress.nl/volume/medicine-meets-virtual-reality-22-nextmed-mmvr22. [54] W. Budiharto, A. A. S. Gunawan, L. A. Wulandhari, Williem, Faisal, R. Sutoyo, Meiliana, D. Suryani, Y. Arifin (Eds.), The 3rd International Conference on Computer Science and Computational Intelligence (ICCSCI 2018) : Empowering Smart Technology in Digital Era for a Better Life, volume 135 of Procedia Computer Science, Elsevier B.V., 2018. URL: https://www.sciencedirect.com/journal/procedia-computer-science/vol/135/suppl/C. [55] L. Rønningsbakk, T.-T. Wu, F. E. Sandnes, Y.-M. Huang (Eds.), Innovative Technologies and Learning: Second International Conference, ICITL 2019, Tromsø, Norway, December 2–5, 2019, Proceedings, volume 11937 of Lecture Notes in Computer Science, Springer International Publishing, 2019. URL: https://doi.org/10.1007/978-3-030-35343-8. doi:10.1007/978-3-030-35343-8. [56] Preface, Journal of Physics: Conference Series 1860 (2021) 011001. URL: https://doi.org/10.1088/ 1742-6596/1860/1/011001. doi:10.1088/1742-6596/1860/1/011001. [57] N. Nordin, N. R. M. Nordin, W. Omar, Rev-opoly: A study on educational board game with webbased augmented reality, Asian Journal of University Education 18 (2022) 81–90. URL: https://doi.org/10.24191/ajue.v18i1.17172. [58] M. E. Rollo, E. J. Aguiar, R. L. Williams, K. Wynne, M. Kriss, R. Callister, C. E. Collins, Ehealth technologies to support nutrition and physical activity behaviors in diabetes self-management, Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 9 (2016) 381–390. URL: https://doi.org/10.2147/DMSO.S95247. [59] C. Samat, S. Chaijaroen, Design and Development of Constructivist Augmented Reality (AR) Book Enhancing Analytical Thinking in Computer Classroom, in: L. Rønningsbakk, T.-T. Wu, F. E. Sandnes, Y.-M. Huang (Eds.), Innovative Technologies and Learning, volume 11937 of Lecture Notes in Computer Science, Springer International Publishing, Cham, 2019, pp. 175–183. URL: https://doi.org/10.1007/978-3-030-35343-8_19. [60] S. M. E. Sepasgozar, Digital twin and web-based virtual gaming technologies for online education: A case of construction management and engineering, Applied Sciences 10 (2020) 4678. URL: https://doi.org/10.3390/app10134678. [61] K. Sharp, M. McCorvie, M. Wagner, Sharing hidden histories: The xrchaeology at miller grove, a free african american community in southern illinois, Journal of African Diaspora Archaeology and Heritage 12 (2023) 5–31. URL: https://doi.org/10.1080/21619441.2021.1902706. [62] E. Smith, K. McRae, G. Semple, H. Welsh, D. Evans, P. Blackwell, Enhancing vocational training in the post-covid era through mobile mixed reality, Sustainability 13 (2021) 6144. URL: https://doi.org/10.3390/su13116144. [63] C. Thabvithorn, C. Samat, Development of Web-Based Learning with Augmented Reality (AR) to Promote Analytical Thinking on Computational Thinking for High School, in: Y.-M. Huang, S.-C. Cheng, J. Barroso, F. E. Sandnes (Eds.), Innovative Technologies and Learning, volume 13449 of Lecture Notes in Computer Science, Springer International Publishing, Cham, 2022, pp. 125–133. URL: https://doi.org/10.1007/978-3-031-15273-3_14. [64] F. Turner, I. Welch, The mixed reality toolkit as the next step in the mass customization co-design experience, International Journal of Industrial Engineering and Management 10 (2019) 191–199. URL: https://doi.org/10.24867/IJIEM-2019-2-239. [65] A. Vahabzadeh, N. Keshav, J. P. Salisbury, N. Sahin, Improvement of attention-deficit/hyperactivity disorder symptoms in school-aged children, adolescents, and young adults with autism via a digital smartglasses-based socioemotional coaching aid: Short-term, uncontrolled pilot study, JMIR Mental Health 5 (2018) e25. URL: https://doi.org/10.2196/mental.9631. [66] D. Villarán, M. B. Ibáñez, C. D. Kloos, Augmented reality-based simulations embedded in problem based learning courses, in: G. Conole, T. Klobučar, C. Rensing, J. Konert, E. Lavoué (Eds.), Design for Teaching and Learning in a Networked World, volume 9307 of Lecture Notes in Computer Science, Springer International Publishing, Cham, 2015, pp. 540–543. URL: https://doi.org/10.1007/978-3-319-24258-3_55. [67] S. Yang, B. Mei, X. Yue, Mobile augmented reality assisted chemical education: Insights from elements 4d, Journal of Chemical Education 95 (2018) 1060–1062. URL: https://doi.org/10.1021/acs.jchemed.8b00017. [68] R. Zatarain-Cabada, M. Barrón-Estrada, B. A. Cárdenas-Sainz, M. E. Chavez-Echeagaray, Experiences of web-based extended reality technologies for physics education, Computer Applications in Engineering Education 31 (2023) 63–82. URL: https://doi.org/10.1002/cae.22571. [69] N. U. Zitzmann, L. Matthisson, H. Ohla, T. Joda, Digital undergraduate education in dentistry: A systematic review, International Journal of Environmental Research and Public Health 17 (2020) 3269. URL: https://doi.org/10.3390/ijerph17093269. [70] S. Hai-Jew, Adult Coloring Books as Emotional Salve/Stress Relief, Tactual-Visual Learning: An Analysis from Mass-Scale Social Imagery, in: Common Visual Art in a Social Digital Age, Nova Science Publishers, Inc., 2022, pp. 171–186. [71] L. Huang, Chemistry Apps on Smartphones and Tablets, in: J. García-Martínez, E. Serrano-Torregrosa (Eds.), Chemistry Education, John Wiley & Sons, Ltd, 2015, pp. 621–650. URL: https://doi.org/10.1002/9783527679300.ch25. [72] C. A. Jara, F. A. Candelas, F. Torres, Internet virtual and remote control interface for robotics education, in: Developments in Higher Education, Nova Science Publishers, Inc., 2009, pp. 136–154. [73] E. Redondo, I. Navarro, A. Sánchez, D. Fonseca, Implementation of Augmented Reality in “3.0 Learning” Methodology: Case Studies with Students of Architecture Degree, in: B. Pătruţ, M. Pătruţ, C. Cmeciu (Eds.), Social Media and the New Academic Environment: Pedagogical Challenges, IGI Global, Hershey, PA, 2013, pp. 391–413. URL: https://doi.org/10.4018/978-1-4666-2851-9.ch019. [74] J. Al-Gharaibeh, C. Jeffery, Portable non-player character tutors with quest activities, in: 2010 IEEE Virtual Reality Conference (VR), 2010, pp. 253–254. URL: https://doi.org/10.1109/VR.2010.5444779. [75] P. E. Antoniou, E. Dafli, G. Arfaras, P. D. Bamidis, Versatile Mixed Reality Educational Spaces; A Medical Education Implementation Case, in: N. Georgalas, Q. Jin, J. Garcia-Blas, J. Carretero, I. Ray (Eds.), Proceedings - 2016 15th International Conference on Ubiquitous Computing and Communications and 2016 8th International Symposium on Cyberspace and Security, IUCC-CSS 2016, Institute of Electrical and Electronics Engineers Inc., 2017, pp. 132–137. URL: https://doi.org/10.1109/IUCC-CSS.2016.026. [76] S. Anwar, J. LeClair, A. Peskin, Development Of Nanotechnology And Power Systems Options For An On Line Bseet Degree, in: 2010 Annual Conference & Exposition, ASEE Conferences, Louisville, Kentucky, 2010, pp. 15.420.1 – 15.420.10. URL: https://doi.org/10.18260/1-2--15776. [77] B. Cardenas-Sainz, R. Zatarain-Cabada, M. Barron-Estrada, M. Chavez-Echeagaray, R. Cabada, FisicARtivo: Design of a learning tool for physics education using web-based XR technology, in: 2022 IEEE Mexican International Conference on Computer Science, ENC 2022 - Proceedings, Institute of Electrical and Electronics Engineers Inc., 2022. URL: https://doi.org/10.1109/ENC56672.2022.9882930. [78] I. Demir, Interactive web-based hydrological simulation system as an education platform, in: A. E. Rizzoli, N. W. T. Quinn, D. P. Ames (Eds.), Proceedings - 7th International Congress on Environmental Modelling and Software: Bold Visions for Environmental Modeling, iEMSs 2014, volume 2, International Environmental Modelling and Software Society, 2014, pp. 910–912. URL: https://doi.org/10.17077/aseenmw2014.1008. [79] M. Farella, D. Taibi, M. Arrigo, G. Todaro, G. Fulantelli, G. Chiazzese, An augmented reality mobile learning experience based on treasure hunt serious game, in: C. Busch, M. Steinicke, R. Friess, T. Wendler (Eds.), Proceedings of the European Conference on e-Learning, ECEL, Academic Conferences and Publishing International Limited, 2021, pp. 148–154. URL: https://doi.org/10.34190/EEL.21.109. [80] J. Ferguson, M. Mentzelopoulos, A. Protopsaltis, D. Economou, Small and flexible web based framework for teaching QR and AR mobile learning application development, in: Proceedings of 2015 International Conference on Interactive Mobile Communication Technologies and Learning, IMCL 2015, Institute of Electrical and Electronics Engineers Inc., 2015, pp. 383–385. URL: https://doi.org/10.1109/IMCTL.2015.7359624. [81] Harun, N. Tuli, A. Mantri, Experience fleming’s rule in electromagnetism using augmented reality: Analyzing impact on students learning, Procedia Computer Science 172 (2020) 660–668. URL: https://doi.org/10.1016/j.procs.2020.05.086. [82] T. Kobayashi, H. Sasaki, A. Toguchi, K. Mizuno, A discussion on web-based learning contents with the AR technology and its authoring tools to improve students’ skills in exercise courses, in: A. F. Mohd Ayub, A. Kashihara, T. Matsui, C.-C. Liu, H. Ogata, S. C. Kong (Eds.), Work-In-Progress Poster - Proceedings of the 22nd International Conference on Computers in Education, ICCE 2014, Asia-Pacific Society for Computers in Education, 2014, pp. 34–36. [83] L. O. Maggi, J. M. X. N. Teixeira, J. R. F. E. S. Junior, J. P. C. Cajueiro, P. V. S. G. De Lima, M. H. R. De Alencar Bezerra, G. N. Melo, 3DJPi: An Open-Source Web-Based 3D Simulator for Pololu’s 3Pi Platform, in: Proceedings - 2019 21st Symposium on Virtual and Augmented Reality, SVR 2019, Institute of Electrical and Electronics Engineers Inc., 2019, pp. 52–58. URL: https://doi.org/10.1109/SVR.2019.00025. [84] R. Marín, P. J. Sanz, The Human-Machine Interaction through the UJI Telerobotic Training System, in: M. H. Hamza (Ed.), IASTED International Conference Robotics and Applications, RA 2003, June 25-27, 2003, Salzburg, Austria, IASTED/ACTA Press, 2003, pp. 47–52. [85] H. S. Narman, C. Berry, A. Canfield, L. Carpenter, J. Giese, N. Loftus, I. Schrader, Augmented Reality for Teaching Data Structures in Computer Science, in: 2020 IEEE Global Humanitarian Technology Conference, GHTC 2020, Institute of Electrical and Electronics Engineers Inc., 2020, p. 9342932. URL: https://doi.org/10.1109/GHTC46280.2020.9342932. [86] M. Nguyen, H. Le, P. M. Lai, W. Q. Yan, A web-based augmented reality platform using pictorial QR code for educational purposes and beyond, in: S. N. Spencer (Ed.), Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST, Association for Computing Machinery, 2019, p. 3364793. URL: https://doi.org/10.1145/3359996.3364793. [87] V. T. Nguyen, K. Jung, S. Yoo, S. Kim, S. Park, M. Currie, Civil war battlefield experience: Historical event simulation using augmented reality technology, in: Proceedings - 2019 IEEE International Conference on Artificial Intelligence and Virtual Reality, AIVR 2019, Institute of Electrical and Electronics Engineers Inc., 2019, pp. 294–297. URL: https://doi.org/10.1109/AIVR46125.2019.00068. [88] LATICE ’14: Proceedings of the 2014 International Conference on Teaching and Learning in Computing and Engineering, IEEE Computer Society, USA, 2014. URL: https://www.computer. org/csdl/proceedings/latice/2014/12OmNrAdsty. [89] Proceedings of 2015 International Conference on Interactive Mobile Communication Technologies and Learning, IMCL 2015, Institute of Electrical and Electronics Engineers Inc., 2015. URL: https://doi.org/10.1109/IMCL37494.2015. [90] T. Tsiatsos, M. E. Auer (Eds.), 11th International Conference on Interactive Mobile Communica- tion Technologies and Learning, IMCL2017, volume 725 of Advances in Intelligent Systems and Computing, Springer Verlag, 2018. URL: https://doi.org/10.1007/978-3-319-75175-7. [91] Innovative Technologies and Learning: 4th International Conference, ICITL 2021, Virtual Event, November 29 – December 1, 2021, Proceedings, volume 13117 of Lecture Notes in Computer Science, Springer International Publishing, 2021. URL: http://doi.org/10.1007/978-3-030-91540-7. doi:10.1007/978-3-030-91540-7. [92] N. Nordin, M. A. Markom, F. A. Suhaimi, S. Ishak, A web-based campus navigation system with mobile augmented reality intervention, Journal of Physics: Conference Series 1997 (2021) 012038. URL: https://doi.org/10.1088/1742-6596/1997/1/012038. [93] S. L. Proskura, S. H. Lytvynova, The approaches to web-based education of computer science bachelors in higher education institutions, CTE Workshop Proceedings 7 (2020) 609–625. URL: https://doi.org/10.55056/cte.416. [94] S. Proskura, S. Lytvynova, O. Kronda, N. Demeshkant, Mobile Learning Approach as a Supplementary Approach in the Organization of the Studying Process in Educational Institutions, in: O. Sokolov, G. Zholtkevych, V. Yakovyna, Y. Tarasich, V. Kharchenko, V. Kobets, O. Burov, S. Semerikov, H. Kravtsov (Eds.), Proceedings of the 16th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshops, Kharkiv, Ukraine, October 06-10, 2020, volume 2732 of CEUR Workshop Proceedings, CEUR-WS.org, 2020, pp. 650–664. URL: https://ceur-ws.org/Vol-2732/20200650.pdf. [95] G. Ryan, J. Murphy, M. Higgins, F. McAuliffe, E. Mangina, Work-in-Progress-Development of a Virtual Reality Learning Environment: VR Baby, in: D. Economou, A. Klippel, H. Dodds, A. Pena-Rios, M. J. W. Lee, D. Beck, J. Pirker, A. Dengel, T. M. Peres, J. Richter (Eds.), Proceedings of 6th International Conference of the Immersive Learning Research Network, iLRN 2020, Institute of Electrical and Electronics Engineers Inc., 2020, pp. 312–315. URL: https://doi.org/10.23919/iLRN47897.2020.9155203. [96] S. Sendari, S. Wibawanto, J. Jasmine, M. Jiono, P. Puspitasari, M. Diantoro, H. Nur, Integrating Robo-PEM with AR Application for Introducing Fuel Cell Implementation, in: 7th International Conference on Electrical, Electronics and Information Engineering: Technological Breakthrough for Greater New Life, ICEEIE 2021, Institute of Electrical and Electronics Engineers Inc., 2021. URL: https://doi.org/10.1109/ICEEIE52663.2021.9616683. [97] T. Sharkey, R. Twomey, A. Eguchi, M. Sweet, Y. C. Wu, Need Finding for an Embodied Coding Platform: Educators’ Practices and Perspectives, in: M. Cukurova, N. Rummel, D. Gillet, B. McLaren, J. Uhomoibhi (Eds.), International Conference on Computer Supported Education, CSEDU - Proceedings, volume 1, Science and Technology Publications, Lda, 2022, pp. 216–227. URL: https://doi.org/10.5220/0011000200003182. [98] N. Spasova, M. Ivanova, Towards augmented reality technology in CAD/CAM systems and engineering education, in: I. Roceanu (Ed.), eLearning and Software for Education Conference, National Defence University - Carol I Printing House, 2020, pp. 496–503. URL: https://doi.org/10.12753/2066-026X-20-151. [99] D. Tennakoon, A. U. Usmani, M. Usman, A. Vasileiou, S. Latchaev, M. Baljko, U. T. Khan, M. A. Perras, M. Jadidi, TEaching Earth Systems Beyond the Classroom: Developing a Mixed Reality (XR) Sandbox, in: ASEE Annual Conference and Exposition, Conference Proceedings, American Society for Engineering Education, 2022. [100] A. Toguchi, H. Sasaki, K. Mizuno, A. Shikoda, Build a prototype of new e-Learning contents by using the AR technology, in: IMSCI 2011 - 5th International Multi-Conference on Society, Cybernetics and Informatics, Proceedings, volume 1, International Institute of Informatics and Systemics, IIIS, 2011, pp. 261–264. [101] A. Toguchi, H. Sasaki, K. Mizuno, A. Shikoda, Development of new e-Learning contents for improvement of laboratory courses by using the AR technology, in: IMSCI 2012 - 6th International Multi-Conference on Society, Cybernetics and Informatics, Proceedings, International Institute of Informatics and Systemics, IIIS, 2012, pp. 189–193. [102] N. Tuli, A. Mantri, S. Sharma, Impact of augmented reality tabletop learning environment on learning and motivation of kindergarten kids, AIP Conference Proceedings 2357 (2022) 040017. URL: https://doi.org/10.1063/5.0080600. [103] I. Wang, M. Nguyen, H. Le, W. Yan, S. Hooper, Enhancing Visualisation of Anatomical Presentation and Education Using Marker-based Augmented Reality Technology on Web-based Platform, in: Proceedings of AVSS 2018 - 2018 15th IEEE International Conference on Advanced Video and Signal-Based Surveillance, Institute of Electrical and Electronics Engineers Inc., 2019, p. 8639147. URL: https://doi.org/10.1109/AVSS.2018.8639147. [104] S. Wongchiranuwat, C. Samat, Synthesis of theoretical framework for augmented reality learning environment to promote creative thinking on topic implementation of graphic design for grade 9 students, in: S. L. Wong, A. G. Barrera, H. Mitsuhara, G. Biswas, J. Jia, J.-C. Yang, M. P. Banawan, M. Demirbilek, M. Gaydos, C.-P. Lin, J. G. Shon, S. Iyer, A. Gulz, C. Holden, G. Kessler, M. M. T. Rodrigo, P. Sengupta, P. Taalas, W. Chen, S. Murthy, B. Kim, X. Ochoa, D. Sun, N. Baloian, T. Hoel, U. Hoppe, T.-C. Hsu, A. Kukulska-Hulme, H.-C. Chu, X. Gu, W. Chen, J. S. Huang, M.-F. Jan, L.-H. Wong, C. Yin (Eds.), ICCE 2016 - 24th International Conference on Computers in Education: Think Global Act Local - Main Conference Proceedings, Asia-Pacific Society for Computers in Education, 2016, pp. 639–641. URL: https://files.eric.ed.gov/fulltext/EJ1211500.pdf. [105] ngrok, Unified Application Delivery Platform for Developers, 2024. URL: https://ngrok.com/. [106] ngrok, Your Authtoken, 2024. URL: https://dashboard.ngrok.com/get-started/your-authtoken. [107] TrackJS LLC, Remote JavaScript Debugger - RemoteJS, 2022. URL: https://remotejs.com/. [108] MDN contributors, WebGL: 2D and 3D graphics for the web, 2023. URL: https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API. [109] Three.js – JavaScript 3D Library, 2024. URL: https://threejs.org/. [110] A. Klavins, 9 ideas for creating tech-infused augmented reality T-shirts, 2021. URL: https://overlyapp.com/blog/9-ideas-for-creating-tech-infused-augmented-reality-t-shirts/. [111] Face Landmarks Detection, 2023. URL: https://github.com/tensorflow/tfjs-models/tree/master/face-landmarks-detection. [112] Google LLC, Face landmark detection guide | MediaPipe | Google for Developers, 2023. URL: https://developers.google.com/mediapipe/solutions/vision/face_landmarker/. [113] Face reference assets for Meta Spark Studio, 2023. URL: https://spark.meta.com/learn/articles/people-tracking/face-reference-assets. [114] The face mask template in Adobe® Photoshop®, 2023. URL: https://spark.meta.com/learn/articles/creating-and-prepping-assets/the-face-mask-template-in-Adobe. [115] TensorFlow, 2024. URL: https://www.tensorflow.org/. [116] TensorFlow.js models, 2024. URL: https://www.tensorflow.org/js/models. [117] Hand Pose Detection, 2023. URL: https://github.com/tensorflow/tfjs-models/tree/master/hand-pose-detection. [118] Find Pre-trained Models | Kaggle, 2024. URL: https://www.kaggle.com/models. [119] Google, Teachable Machine, 2017. URL: https://teachablemachine.withgoogle.com/. [120] MobileNet, 2023. URL: https://github.com/tensorflow/tfjs-models/tree/master/mobilenet. [121] Speech Command Recognizer, 2024. URL: https://github.com/tensorflow/tfjs-models/tree/master/speech-commands. [122] Pose Detection in the Browser: PoseNet Model, 2024. URL: https://github.com/tensorflow/tfjs-models/tree/master/posenet. |
URI (Уніфікований ідентифікатор ресурсу): | https://ceur-ws.org/Vol-3820/paper249.pdf http://ds.knu.edu.ua/jspui/handle/123456789/5505 |
ISSN: | 1613-0073 |
Розташовується у зібраннях: | Кафедра професійної та соціально-гуманітарної освіти |
Файли цього матеріалу:
Файл | Опис | Розмір | Формат | |
---|---|---|---|---|
paper249.pdf | 3.85 MB | Adobe PDF | Переглянути/Відкрити |
Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.