Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://ds.knu.edu.ua/jspui/handle/123456789/5501
Назва: Road Sign Recognition Using Convolutional Neural Networks
Автори: Mukovoz, Viktor
Vakaliuk, Tetiana
Semerikov, Serhiy
Ключові слова: Road Sign Recognition
Convolutional Neural Networks
Computer Vision
Intelligent Transportation Systems
Autonomous Driving
Deep Learning
Image Classification
Дата публікації: 8-жов-2024
Видавництво: Springer, Cham
Бібліографічний опис: Mukovoz V. Road Sign Recognition Using Convolutional Neural Networks / Viktor Mukovoz, Tetiana Vakaliuk, Serhiy Semerikov // Information Technology for Education, Science, and Technics: Proceedings of ITEST 2024, Volume 2 / Editors : Emil Faure, Yurii Tryus, Tero Vartiainen, Olena Danchenko, Maksym Bondarenko, Constantine Bazilo, Grygoriy Zaspa // Lecture Notes on Data Engineering and Communications Technologies. – Cham : Springer, 2024. – Vol. 222. – P. 172–188. – DOI : https://doi.org/10.1007/978-3-031-71804-5_12 Mukovoz V. Road Sign Recognition Using Convolutional Neural Networks / Viktor Mukovoz, Tetiana Vakaliuk, Serhiy Semerikov // Information Technology for Education, Science, and Technics: Proceedings of ITEST 2024, Volume 2 / Editors : Emil Faure, Yurii Tryus, Tero Vartiainen, Olena Danchenko, Maksym Bondarenko, Constantine Bazilo, Grygoriy Zaspa // Lecture Notes on Data Engineering and Communications Technologies. – Cham : Springer, 2024. – Vol. 222. – P. 172–188. – DOI : https://doi.org/10.1007/978-3-031-71804-5_12
Короткий огляд (реферат): Road sign recognition is critical for autonomous driving and advanced driver assistance systems, ensuring road safety and efficient traffic flow. This paper presents a study on developing an accurate and robust road sign recognition system using convolutional neural networks (CNNs). The study explores various CNN architectures, training techniques, and data preprocessing methods to optimise performance. A detailed analysis of the Traffic Signs Preprocessed dataset is conducted, and a series of nine CNN models with different filter sizes are trained and evaluated. The results demonstrate the effectiveness of CNNs in extracting relevant features from road sign images and accurately classifying them into standard categories. The study also investigates the impact of filter size on model accuracy, providing valuable insights into the trade-offs between complexity and performance. Additionally, the paper discusses implementing a software application that integrates the trained CNN model for real-time road sign recognition from images and videos. The application's graphical user interface allows users to upload data and visualise the detected and classified road signs, showcasing the practical applicability of the developed system.
Опис: Road traffic regulations (2024). https://autoshkola-navihator.com.ua/pravyla-dorozhnoho-rukhu-ukrayina. Accessed 01 June 2024 Cho, H., Han, Y., Kim, W.H.: Anti-adversarial consistency regularization for data augmentation: applications to robust medical image segmentation. In: Greenspan, H., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, MICCAI 2023, Part IV. LNCS, vol. 14223, pp. 555–566. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43901-8_53 Chollet, F.: How convolutional neural networks see the world (2016). https://tinyurl.com/3by9pdwt. Accessed 01 June 2024 Chollet, F.: Deep Learning with Python. Manning, 2 edn. (2021) Google Scholar Dewi, C., Chen, R., Zhuang, Y., Jiang, X., Yu, H.: Recognizing road surface traffic signs based on yolo models considering image flips. Big Data Cogn. Comput. 7(1), 54 (2023). https://doi.org/10.3390/BDCC7010054 Article Google Scholar Ding, X., Zhang, X., Zhou, Y., Han, J., Ding, G., Sun, J.: Scaling up your kernels to 31x31: revisiting large kernel design in CNNs. CoRR abs/2203.06717 (2022). https://doi.org/10.48550/ARXIV.2203.06717 Edward, V.C.P.: Chapter two - Smart crisis management system for road accidents based on modified convolutional neural networks-particle swarm optimization hybrid algorithm. Adv. Comput. 132, 19–31 (2024). https://doi.org/10.1016/BS.ADCOM.2023.07.002 Article Google Scholar He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 770–778. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.90 Kadunc, N.O.: How to Normalise Satellite Images for Deep Learning (2022). https://tinyurl.com/4je73r8n. Accessed 01 June 2024 Kato, H., Osuge, K., Haruta, S., Sasase, I.: A preprocessing methodology by using additional steganography on CNN-based steganalysis. In: IEEE Global Communications Conference, GLOBECOM 2020, Virtual Event, Taiwan, 7–11 December 2020, pp. 1–6. IEEE (2020). https://doi.org/10.1109/GLOBECOM42002.2020.9322594 Khan, M.J.K.B.M.B., Shah, N.M., Mokhtar, N.: Detection and classification of road signs in raining condition with limited dataset. Signal Image Video Process. 17(5), 2015–2023 (2023). https://doi.org/10.1007/S11760-022-02414-W Kiv, A., Semerikov, S., Soloviev, V.N., Kibalnyk, L., Danylchuk, H., Matviychuk, A.: Experimental economics and machine learning for prediction of emergent economy dynamics. CEUR Workshop Proc. 2422, 1–4 (2019). https://ceur-ws.org/Vol-2422/paper00.pdf Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting held December 3–6, 2012, Lake Tahoe, Nevada, US, pp. 1106–1114 (2012). https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791 Article Google Scholar Lin, Y., Wang, Y.: Modular learning: agile development of robust traffic sign recognition. IEEE Trans. Intell. Veh. 9(1), 764–774 (2024). https://doi.org/10.1109/TIV.2023.3322407 Article Google Scholar Pilkevych, I.A., Fedorchuk, D.L., Romanchuk, M.P., Naumchak, O.M.: Approach to the fake news detection using the graph neural networks. J. Edge Comput. 2(1), 24–36 (2023). https://doi.org/10.55056/jec.592 Pullum, L.L., Taylor, B.J., Darrah, M.A.: Guidance for the verification and validation of neural networks. Kybernetes 37(8) (2008). https://doi.org/10.1108/k.2008.06737hae.002 Semerikov, S.O., et al.: Development of the computer vision system based on machine learning for educational purposes. Educ. Dimens. 5, 8–60 (2021). https://doi.org/10.31812/educdim.4717 Sermanet, P., LeCun, Y.: Traffic sign recognition with multi-scale Convolutional Networks. In: The 2011 International Joint Conference on Neural Networks, IJCNN 2011, San Jose, CA, pp. 2809–2813. IEEE (2011). https://doi.org/10.1109/IJCNN.2011.6033589 Sewak, M., Karim, M.R., Pujari, P.: Practical Convolutional Neural Networks. Packt Publishing, Birmingham (2018) Google Scholar Sichkar, V.: Traffic Signs Preprocessed (2019). https://www.kaggle.com/datasets/valentynsichkar/traffic-signs-preprocessed. Accessed 01 June 202 Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition (2015). https://arxiv.org/abs/1409.1556. Accessed 01 June 202 Sroczynski, A., Czyzewski, A.: Examining the impact of distance between VSL road signs on vehicle speed variance. IEEE Access 11, 7521–7529 (2023). https://doi.org/10.1109/ACCESS.2023.3238578 Article Google Scholar Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: The German traffic sign recognition benchmark: a multi-class classification competition. In: The 2011 International Joint Conference on Neural Networks, IJCNN 2011, San Jose, California, USA, 31 July – 5 August 2011, pp. 1453–1460. IEEE (2011). https://doi.org/10.1109/IJCNN.2011.6033395 United Nations: Convention on Road Signs and Signals. Vienna, 8 November 1968. In: Treaty Series, vol. 1091, p. 3 (1968). https://tinyurl.com/48xysrcw Zahorodko, P.V., Semerikov, S.O., Soloviev, V.N., Striuk, A.M., Striuk, M.I., Shalatska, H.M.: Comparisons of performance between quantum-enhanced and classical machine learning algorithms on the IBM Quantum Experience. J. Phys. Conf. Ser. 1840(1), 012021 (2021). https://doi.org/10.1088/1742-6596/1840/1/012021 Zhou, P., Feng, J., Ma, C., Xiong, C., Hoi, S.C., Weinan, E.: Towards theoretically understanding why SGD generalizes better than Adam in deep learning. In: Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, 6–12 December 2020, Virtual (2020). https://proceedings.neurips.cc/paper/2020/hash/f3f27a324736617f20abbf2ffd806f6d-Abstract.html
URI (Уніфікований ідентифікатор ресурсу): https://doi.org/10.1007/978-3-031-71804-5_12
https://link.springer.com/chapter/10.1007/978-3-031-71804-5_12
http://ds.knu.edu.ua/jspui/handle/123456789/5501
ISBN: 978-3-031-71803-8
978-3-031-71804-5
Розташовується у зібраннях:Кафедра професійної та соціально-гуманітарної освіти

Файли цього матеріалу:
Файл Опис РозмірФормат 
ITEST_2024_vol_2-185-201_Mukovoz_Vakaliuk_Semerikov.pdf2.54 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.