Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
http://ds.knu.edu.ua/jspui/handle/123456789/5470
Назва: | Embracing Emerging Technologies: Insights from the 6th Workshop for Young Scientists in Computer Science & Software Engineering |
Автори: | Semerikov, Serhiy O. Striuk, Andrii M. |
Ключові слова: | emerging technologies telemetry graph theory machine learning acoustic surveillance genetic algorithms neural networks software reliability enterprise resource planning user experience virtual laboratories Python learning games predatory conferences |
Дата публікації: | 10-кві-2024 |
Бібліографічний опис: | Semerikov S. O. Embracing Emerging Technologies: Insights from the 6th Workshop for Young Scientists in Computer Science & Software Engineering / Serhiy O. Semerikov, Andrii M. Striuk // Proceedings of the 6th Workshop for Young Scientists in Computer Science & Software Engineering (CS&SE@SW 2023). Virtual Event, Kryvyi Rih, Ukraine, February 2, 2024 / Edited by: Serhiy O. Semerikov, Andrii M. Striuk // CEUR Workshop Proceedings. – 2024. – Vol. 3662. – P. 1-36. – Access mode : https://ceur-ws.org/Vol-3662/paper00.pdf |
Короткий огляд (реферат): | The 6th Workshop for Young Scientists in Computer Science & Software Engineering showcases cutting- edge research from emerging talents. This volume comprises diverse papers illuminating emerging technologies’ profound impact across various domains. Several contributions underscore the pivotal role of telemetry, graph theory, and machine learning in optimising distributed systems, detecting anomalies, and streamlining processes. Others delve into acoustic surveillance techniques for UAV detection, genetic algorithms for university scheduling, and neural network-driven optimisation of chemical synthesis. The proceedings also highlight novel approaches to assessing software architecture reliability, implementing ERP systems, and designing information systems for viral infection data analysis. Thermal resistance calculation software, multimodal distribution data processing methods, and high-performance computing energy consumption modelling are also explored. Moreover, the importance of user experience research in cross-platform application development is emphasised, alongside the design of virtual physics laboratories and Python learning game applications. Notably, predatory conferences are addressed, proposing robust conference management platforms to uphold research integrity. Collectively, these papers exemplify young scientists’ innovative spirit and determination to tackle real-world challenges and push the boundaries of their disciplines. |
Опис: | [1] A. E. Kiv, S. O. Semerikov, V. N. Soloviev, A. M. Striuk, First Student Workshop on Computer Science & Software Engineering, CEUR Workshop Proceedings 2292 (2018) 1–10. URL: http://ceur-ws.org/Vol-2292/paper00.pdf. [2] A. E. Kiv, S. O. Semerikov, V. N. Soloviev, A. M. Striuk, Second Student Workshop on Computer Science & Software Engineering, CEUR Workshop Proceedings 2546 (2019) 1–20. URL: http://ceur-ws.org/Vol-2546/paper00.pdf. [3] A. E. Kiv, S. O. Semerikov, V. N. Soloviev, A. M. Striuk, 3rd Workshop for Young Scientists in Computer Science & Software Engineering, CEUR Workshop Proceedings 2832 (2020) 1–10. URL: http://ceur-ws.org/Vol-2832/paper00.pdf. [4] A. E. Kiv, S. O. Semerikov, V. N. Soloviev, A. M. Striuk, 4th Workshop for Young Scientists in Computer Science & Software Engineering, CEUR Workshop Proceedings 3077 (2022) i–xxxv. URL: https://ceur-ws.org/Vol-3077/intro.pdf. [5] S. O. Semerikov, A. M. Striuk, Embracing Emerging Technologies: Insights from the 6th Workshop for Young Scientists in Computer Science & Software Engineering, CEUR Workshop Proceedings (2024) 1–36. [6] Y. O. Chernukha, O. V. Klochko, T. P. Zuziak, Methodology of implementation of modern information systems at commercial enterprises, CEUR Workshop Proceedings (2024) 48–62. [7] V. P. Oleksiuk, D. V. Verbovetskyi, I. A. Hrytsai, Design and development of a game application for learning Python, CEUR Workshop Proceedings (2024) 111–124. [8] M. Y. Salohub, O. H. Rybalchenko, S. V. Bilashenko, Designing a cross-platform user- friendly transport company application, CEUR Workshop Proceedings (2024) 75–85. [9] Y. L. Turchyk, M. V. Puzino, O. H. Rybalchenko, S. V. Bilashenko, Research of the route planning algorithms on the example of a drone delivery system software development, CEUR Workshop Proceedings (2024) 86–100. [10] V. M. Bazurin, O. I. Pursky, Y. M. Karpenko, T. V. Pidhorna, A. I. Nechepourenko, Soft- ware development of thermal resistance calculator for thermal insulation parameters determines dielectric building structures, CEUR Workshop Proceedings (2024) 237–245. [11] I. V. Krasnokutska, O. S. Krasnokutskyi, Implementing E2E tests with Cypress and Page Object Model: evolution of approaches, CEUR Workshop Proceedings (2024) 101–110. [12] P. I. Chopyk, V. P. Oleksiuk, O. P. Chukhrai, Using the Three.js library to develop remote physical laboratory to investigate diffraction, CEUR Workshop Proceedings (2024) 246–259. 29[13] N. Rudnichenko, V. Vychuzhanin, T. Otradskya, I. Petrov, Information system module for analysis viral infections data based on machine learning, CEUR Workshop Proceedings (2024) 63–74. [14] V. Krutko, I. Spivak, S. Krepych, An approach to assessing the reliability of software systems based on a graph model of method dependence, CEUR Workshop Proceedings (2024) 37–47. [15] O. V. Solomentsev, M. Y. Zaliskyi, D. I. Bakhtiiarov, B. S. Chumachenko, Data processing method for multimodal distribution parameters estimation, CEUR Workshop Proceedings (2024) 144–154. [16] O. V. Hryshchuk, S. P. Zagorodnyuk, Modern methods of energy consumption optimiza- tion in FPGA-based heterogeneous HPC systems, CEUR Workshop Proceedings (2024) 167–176. [17] Y. B. Shapovalov, V. B. Shapovalov, Conference platform metadata and functions: existing platforms analysis and ontology-based approach, CEUR Workshop Proceedings (2024) 177–192. [18] O. Y. Lavrynenko, D. I. Bakhtiiarov, B. S. Chumachenko, O. G. Holubnychyi, G. F. Kon- akhovych, V. V. Antonov, Application of Daubechies wavelet analysis in problems of acoustic detection of UAVs, CEUR Workshop Proceedings (2024) 125–143. [19] I. V. Ponomarenko, V. M. Pavlenko, O. B. Morhulets, D. V. Ponomarenko, N. M. Ukhnal, Application of artificial intelligence in digital marketing, CEUR Workshop Proceedings (2024) 155–166. [20] B. B. Sus, O. S. Bauzha, S. P. Zagorodnyuk, T. V. Chaikivskyi, , O. V. Hryshchuk, Predictive machine learning of soybean oil epoxidizing reactions using artificial neural networks, CEUR Workshop Proceedings (2024) 223–236. [21] O. V. Talaver, T. A. Vakaliuk, Dynamic system analysis using telemetry, CEUR Workshop Proceedings (2024) 193–209. [22] I. Fedorchenko, A. Oliinyk, T. Zaiko, K. Miedviediev, Y. Fedorchenko, M. Khokhlov, Development of a modified genetic method for automatic university scheduling, CEUR Workshop Proceedings (2024) 210–222. [23] N. Cavus, M. M. Al-Momani, Mobile system for flexible education, Procedia Computer Science 3 (2011) 1475–1479. doi:10.1016/j.procs.2011.01.034, world Conference on Information Technology. [24] A. B. Mbombo, N. Cavus, Smart University: A University In the Technological Age, TEM Journal (2021) 13–17. doi:10.18421/tem101-02. [25] D. Budgen, J. Bailey, M. Turner, B. Kitchenham, P. Brereton, S. Charters, Cross-domain investigation of empirical practices, IET Software 3 (2009) 410–421(11). URL: https: //digital-library.theiet.org/content/journals/10.1049/iet-sen.2008.0106. [26] D. Budgen, B. Kitchenham, S. Charters, S. Gibbs, A. Pohthong, J. Keung, P. Brereton, Lessons from Conducting a Distributed Quasi-experiment, in: 2013 ACM / IEEE Inter- national Symposium on Empirical Software Engineering and Measurement, 2013, pp. 143–152. doi:10.1109/ESEM.2013.12. [27] A. Kertész, P. Kacsuk, A Taxonomy of Grid Resource Brokers, in: P. Kacsuk, T. Fahringer, Z. Németh (Eds.), Distributed and Parallel Systems, Springer US, Boston, MA, 2007, pp. 201–210. doi:10.1007/978-0-387-69858-8_20. 30[28] B. Mishra, B. Mishra, A. Kertesz, Stress-Testing MQTT Brokers: A Comparative Analysis of Performance Measurements, Energies 14 (2021) 5817. doi:10.3390/en14185817. [29] J. Suryadevara, B. Sunil, N. K. Suryadevara, Secured multimedia authentication system for wireless sensor network data related to internet of things, in: Seventh International Conference on Sensing Technology, ICST 2013, Wellington, New Zealand, December 3-5, 2013, IEEE, 2013, pp. 109–115. URL: https://doi.org/10.1109/ICSensT.2013.6727625. doi:10.1109/ICSENST.2013.6727625. [30] N. K. Survadevara, S. C. Mukhopadhyay, R. K. Rayudu, Applying SARIMA time series to forecast sleeping activity for wellness model of elderly monitoring in smart home, in: 2012 Sixth International Conference on Sensing Technology (ICST), 2012, pp. 157–162. doi:10.1109/ICSensT.2012.6461661. [31] M. I. Nadeem, K. Ahmed, D. Li, Z. Zheng, H. K. Alkahtani, S. M. Mostafa, O. Mamyr- bayev, H. Abdel Hameed, EFND: A Semantic, Visual, and Socially Augmented Deep Framework for Extreme Fake News Detection, Sustainability 15 (2023) 133. doi:10.3390/ su15010133. [32] A. Yeshmukhametov, M. Kalimoldayev, O. Mamyrbayev, Y. Amirgaliev, Design and kinematics of serial/parallel hybrid robot, in: 2017 3rd International Conference on Control, Automation and Robotics (ICCAR), 2017, pp. 162–165. doi:10.1109/ICCAR. 2017.7942679. [33] J. Bae, B. Moon, Time synchronization with fast asynchronous diffusion in wireless sensor network, in: 2009 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, 2009, pp. 82–85. doi:10.1109/CYBERC.2009.5342158. [34] H. Lee, B. Moon, A. H. Aghvami, Enhanced SIP for Reducing IMS Delay under WiFi- to-UMTS Handover Scenario, in: 2008 The Second International Conference on Next Generation Mobile Applications, Services, and Technologies, 2008, pp. 640–645. doi:10. 1109/NGMAST.2008.63. [35] J. Wan, C. A. Byrne, M. J. O’Grady, G. M. P. O’Hare, Managing Wandering Risk in People With Dementia, IEEE Transactions on Human-Machine Systems 45 (2015) 819–823. doi:10.1109/THMS.2015.2453421. [36] C. Muldoon, G. M. P. O’Hare, M. J. O’Grady, R. Tynan, Agent Migration and Commu- nication in WSNs, in: 2008 Ninth International Conference on Parallel and Distributed Computing, Applications and Technologies, 2008, pp. 425–430. doi:10.1109/PDCAT. 2008.58. [37] J. Morajda, G. Paliwoda-Pekosz, An Enhancement of Kohonen Neural Networks for Predictive Analytics: Self-Organizing Prediction Maps, in: B. B. Anderson, J. Thatcher, R. D. Meservy, K. Chudoba, K. J. Fadel, S. Brown (Eds.), 26th Americas Conference on Information Systems, AMCIS 2020, Virtual Conference, August 15-17, 2020, Association for Information Systems, 2020. URL: https://aisel.aisnet.org/amcis2020/ai_semantic_for_ intelligent_info_systems/ai_semantic_for_intelligent_info_systems/6. [38] P. Lula, G. Paliwoda-Pundefinedkosz, An ontology-based cluster analysis framework, in: Proceedings of the First International Workshop on Ontology-Supported Business Intelligence, OBI ’08, Association for Computing Machinery, New York, NY, USA, 2008. doi:10.1145/1452567.1452574. [39] E. Serral, P. Valderas, V. Pelechano, Addressing the evolution of automated user behaviour 31patterns by runtime model interpretation, Software & Systems Modeling 14 (2015) 1387– 1420. doi:10.1007/s10270-013-0371-3. [40] E. Serral, P. Valderas, V. Pelechano, A Model Driven Development Method for Developing Context-Aware Pervasive Systems, in: F. E. Sandnes, Y. Zhang, C. Rong, L. T. Yang, J. Ma (Eds.), Ubiquitous Intelligence and Computing, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 662–676. doi:10.1007/978-3-540-69293-5_52. [41] Y. Romanenkov, V. Pasichnyk, N. Veretennikova, M. Nazaruk, A. Leheza, Information and Technological Support for the Processes of Prognostic Modeling of Regional Labor Markets, CEUR Workshop Proceedings 2386 (2019) 24–34. URL: https://ceur-ws.org/ Vol-2386/paper3.pdf. [42] N. Veretennikova, N. Kunanets, Recommendation Systems as an Information and Tech- nology Tool for Virtual Research Teams, in: N. Shakhovska, V. Stepashko (Eds.), Advances in Intelligent Systems and Computing II, Springer International Publishing, Cham, 2018, pp. 577–587. doi:10.1007/978-3-319-70581-1_40. [43] M. Dong, L. Yao, X. Wang, B. Benatallah, Q. Z. Sheng, H. Huang, DUAL: A Deep Unified Attention Model with Latent Relation Representations for Fake News Detection, in: H. Hacid, W. Cellary, H. Wang, H.-Y. Paik, R. Zhou (Eds.), Web Information Systems Engineering – WISE 2018, Springer International Publishing, Cham, 2018, pp. 199–209. doi:10.1007/978-3-030-02922-7_14. [44] K. Chen, L. Yao, X. Wang, D. Zhang, T. Gu, Z. Yu, Z. Yang, Interpretable Parallel Recurrent Neural Networks with Convolutional Attentions for Multi-Modality Activity Modeling, in: 2018 International Joint Conference on Neural Networks (IJCNN), 2018, pp. 1–8. doi:10.1109/IJCNN.2018.8489767. [45] A. Zunino, M. Campo, Chronos: A multi-agent system for distributed automatic meeting scheduling, Expert Systems with Applications 36 (2009) 7011–7018. doi:10.1016/j. eswa.2008.08.024. [46] A. De Renzis, M. Garriga, A. Flores, A. Cechich, A. Zunino, Case-based Reasoning for Web Service Discovery and Selection, Electronic Notes in Theoretical Computer Science 321 (2016) 89–112. doi:10.1016/j.entcs.2016.02.006, cLEI 2015, the XLI Latin American Computing Conference. [47] B. Schooley, N. Hikmet, E. Atilgan, Health IT Maturity and Hospital Quality: Effects of PACS Automation and Integration Levels on U.S. Hospital Performance, in: 2016 International Conference on Computational Science and Computational Intelligence (CSCI), 2016, pp. 45–50. doi:10.1109/CSCI.2016.0016. [48] E. Atilgan, I. Ozcelik, E. N. Yolacan, MQTT Security at a Glance, in: 2021 International Conference on Information Security and Cryptology (ISCTURKEY), 2021, pp. 138–142. doi:10.1109/ISCTURKEY53027.2021.9654337. [49] I. Krak, O. Barmak, E. Manziuk, A. Kulias, Data Classification Based on the Features Reduction and Piecewise Linear Separation, in: P. Vasant, I. Zelinka, G.-W. Weber (Eds.), Intelligent Computing and Optimization, Springer International Publishing, Cham, 2020, pp. 282–289. doi:10.1007/978-3-030-33585-4_28. [50] Y. Krak, O. Barmak, O. Mazurets, The practice implementation of the information technology for automated definition of semantic terms sets in the content of educational materials, CEUR Workshop Proceedings 2139 (2018) 245–254. URL: http://ceur-ws.org/ 32Vol-2139/245-254.pdf. [51] K. M. Caramancion, The Relation Between Time of the Day and Misinformation Vul- nerability: A Multivariate Approach, in: 2021 IEEE 16th International Conference on Computer Sciences and Information Technologies (CSIT), volume 1, 2021, pp. 150–153. doi:10.1109/CSIT52700.2021.9648654. [52] K. M. Caramancion, Textual vs. Visual Fake News: A Deception Showdown, in: 2021 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM), 2021, pp. 31–35. doi:10.1109/CCEM53267.2021.00015. [53] P. Hryhoruk, N. Khrushch, S. a. Grygoruk, Using Multidimensional Scaling for Assessment Economic Development of Regions, International journal of industrial Engineering & Production Research 31 (2020). doi:10.22068/ijiepr.31.4.597. [54] P. Hryhoruk, N. Khrushch, S. Grygoruk, K. Gorbatiuk, L. Prystupa, Assessing the Impact of COVID-19 Pandemic on the Regions’ Socio-Economic Development: The Case of Ukraine, European Journal of Sustainable Development 10 (2021) 63. doi:10.14207/ ejsd.2021.v10n1p63. [55] V. N. Kukharenko, A. P. Fedosova, A. G. Kolgatin, V. G. Dosov, Studying the processes in the xenon heat exchanger-freezer, Khimicheskoe I Neftegazovoe Mashinostroenie (1992) 19–21. [56] L. Bilousova, O. Kolgatin, L. Kolgatina, Pedagogical Diagnostics with Use of Computer Technologies, CEUR Workshop Proceedings 1000 (2013) 209–220. URL: https://ceur-ws. org/Vol-1000/ICTERI-2013-p-209-220.pdf. [57] A. V. Riabko, T. A. Vakaliuk, O. V. Zaika, R. P. Kukharchuk, V. V. Kontsedailo, Chatbot algorithm for solving physics problems, CEUR Workshop Proceedings 3553 (2023) 75–92. URL: https://ceur-ws.org/Vol-3553/paper5.pdf. [58] A. V. Riabko, T. A. Vakaliuk, O. V. Zaika, R. P. Kukharchuk, V. V. Kontsedailo, Cluster fault tolerance model with migration of virtual machines, CEUR Workshop Proceedings 3374 (2023) 23–40. URL: https://ceur-ws.org/Vol-3374/paper02.pdf. [59] A. Hrechuk, V. Bushlya, J.-E. Ståhl, V. Kryzhanivskyy, Novel metric “Implenarity” for characterization of shape and defectiveness: The case of CFRP hole quality, Composite Structures 265 (2021) 113722. doi:10.1016/j.compstruct.2021.113722. [60] M. Moreno, J. M. Andersson, R. M’Saoubi, V. Kryzhanivskyy, M. P. Johansson-Jöesaar, L. J. S. Johnson, M. Odén, L. Rogström, Adhesive wear of tialn coatings during low speed turning of stainless steel 316l, Wear 524-525 (2023) 204838. doi:10.1016/j.wear.2023. 204838. [61] A. Kupin, Neural Identification of Technological Process of Iron Ore Beneficiation, in: 2007 4th IEEE Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, 2007, pp. 225–227. doi:10.1109/IDAACS.2007. 4488409. [62] A. Kupin, Research of properties of conditionality of task to optimization of processes of concentrating technology is on the basis of application of neural networks, Metallurgical and Mining Industry 6 (2014) 51–55. [63] A. V. Morozov, T. A. Vakaliuk, I. A. Tolstoy, Y. O. Kubrak, M. G. Medvediev, Digitalization of thesis preparation life cycle: a case of zhytomyr polytechnic state university, CEUR Workshop Proceedings 3553 (2023) 142–154. URL: https://ceur-ws.org/Vol-3553/paper14. 33pdf. [64] R. P. Kukharchuk, T. A. Vakaliuk, O. V. Zaika, A. V. Riabko, M. Medvediev, Implementa- tion of STEM learning technology in the process of calibrating an NTC thermistor and developing an electronic thermometer based on it, CEUR Workshop Proceedings 3358 (2022) 39–52. URL: https://ceur-ws.org/Vol-3358/paper25.pdf. [65] N. Balyk, O. Barna, G. Shmyger, V. Oleksiuk, Model of Professional Retraining of Teachers Based on the Development of STEM Competencies, CEUR Workshop Proceedings 2104 (2018) 318–331. URL: https://ceur-ws.org/Vol-2104/paper_157.pdf. [66] O. Spirin, V. Oleksiuk, O. Oleksiuk, S. Sydorenko, The Group Methodology of Using Cloud Technologies in the Training of Future Computer Science Teachers, CEUR Workshop Proceedings 2104 (2018) 294–304. URL: https://ceur-ws.org/Vol-2104/paper_154.pdf. [67] S. Semerikov, S. Chukharev, S. Sakhno, A. Striuk, A. Iatsyshyn, S. Klimov, V. Osad- chyi, T. Vakaliuk, P. Nechypurenko, O. Bondarenko, H. Danylchuk, Our sustainable pandemic future, E3S Web of Conferences 280 (2021) 00001. doi:10.1051/e3sconf/ 202128000001. [68] D. S. Shepiliev, Y. O. Modlo, Y. V. Yechkalo, V. V. Tkachuk, M. M. Mintii, I. S. Mintii, O. M. Markova, T. V. Selivanova, O. M. Drashko, O. O. Kalinichenko, T. A. Vakaliuk, V. V. Osadchyi, S. O. Semerikov, Webar development tools: An overview, CEUR Workshop Proceedings 2832 (2020) 84–93. [69] S. A. MacGowan, F. Madeira, T. Britto-Borges, M. Warowny, A. Drozdetskiy, J. B. Procter, G. J. Barton, The Dundee Resource for Sequence Analysis and Structure Prediction, Protein Science 29 (2020) 277–297. doi:10.1002/pro.3783. [70] H. Wright, K. Brodlie, J. Wood, J. Procter, Problem Solving Environments: Extending the Rôle of Visualization Systems, in: A. Bode, T. Ludwig, W. Karl, R. Wismüller (Eds.), Euro-Par 2000 Parallel Processing, Springer Berlin Heidelberg, Berlin, Heidelberg, 2000, pp. 1323–1331. doi:10.1007/3-540-44520-X_185. [71] V. Derbentsev, S. Semerikov, O. Serdyuk, V. Solovieva, V. Soloviev, Recurrence based entropies for sustainability indices, E3S Web of Conferences 166 (2020) 13031. doi:10. 1051/e3sconf/202016613031. [72] A. Kiv, V. Soloviev, S. Semerikov, H. Danylchuk, L. Kibalnyk, A. Matviychuk, Experimental economics and machine learning for prediction of emergent economy dynamics, CEUR Workshop Proceedings 2422 (2019) 1–4. [73] A. Ganbayev, E. Seyidzade, Enhancing Customs Fraud Detection: A Comparative Study of Methods for Performance Measurement and Feature Improvement, in: 2023 IEEE 17th In- ternational Conference on Application of Information and Communication Technologies (AICT), 2023, pp. 1–5. doi:10.1109/AICT59525.2023.10313153. [74] A. Adamov, S. Mehdiyev, E. Seyidzade, Good practice of data modeling and database design for UMIS. Course registration system implementation, in: 2014 IEEE 8th International Conference on Application of Information and Communication Technologies (AICT), 2014, pp. 1–4. doi:10.1109/ICAICT.2014.7035949. [75] S. O. Semerikov, A. M. Striuk, T. A. Vakaliuk, A. Morozov, Quantum information technology on the Edge, CEUR Workshop Proceedings 2850 (2021) 1–15. URL: http: //ceur-ws.org/Vol-2850/paper0.pdf. [76] S. O. Semerikov, S. M. Chukharev, S. I. Sakhno, A. M. Striuk, A. V. Iatsyshin, S. V. Klimov, 34V. V. Osadchyi, T. A. Vakaliuk, P. P. Nechypurenko, O. V. Bondarenko, H. B. Danylchuk, 3rd International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters, IOP Conference Series: Earth and Environmental Science 1049 (2022) 011001. doi:10.1088/1755-1315/1049/1/011001. [77] T. A. Vakaliuk, L. D. Shevchuk, B. V. Shevchuk, Possibilities of using AR and VR technolo- gies in teaching mathematics to high school students, Universal Journal of Educational Research 8 (2020) 6280 – 6288. doi:10.13189/ujer.2020.082267. [78] T. Vakaliuk, D. Antoniuk, A. Morozov, M. Medvedieva, M. Medvediev, Green IT as a tool for design cloud-oriented sustainable learning environment of a higher education institu- tion, E3S Web of Conferences 166 (2020) 10013. doi:10.1051/e3sconf/202016610013. [79] V. Voytenko, Some challenges in mobile context-aware applications for courses in academia, in: N. C. Callaos, B. Sanchez, H. W. Chu, J. Ferrer, S. L. Fernandes (Eds.), 7th International Multi-Conference on Complexity, Informatics and Cybernetics, IMCIC 2016 and 7th International Conference on Society and Information Technologies, ICSIT 2016 - Proceedings, volume 1, International Institute of Informatics and Systemics, IIIS, 2016, pp. 244–245. [80] F. Lin, A. Dewan, V. Voytenko, Open Interactive Algorithm Visualization, in: 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), 2019, pp. 1–4. doi:10.1109/CCECE.2019.8861535. [81] O. V. Bondarenko, P. P. Nechypurenko, V. A. Hamaniuk, S. O. Semerikov, Educational Dimension: a new journal for research on education, learning and training, Educational Dimension 1 (2019) 1–4. doi:10.31812/ed.620. [82] S. Semerikov, Educational Technology Quarterly: in the beginning, Educational Technol- ogy Quarterly 2021 (2021) 1–50. doi:10.55056/etq.13. [83] S. Papadakis, A. E. Kiv, H. M. Kravtsov, V. V. Osadchyi, M. V. Marienko, O. P. Pinchuk, M. P. Shyshkina, O. M. Sokolyuk, I. S. Mintii, T. A. Vakaliuk, L. E. Azarova, L. S. Kolgatina, S. M. Amelina, N. P. Volkova, V. Y. Velychko, A. M. Striuk, S. O. Semerikov, ACNS Conference on Cloud and Immersive Technologies in Education: Report, CTE Workshop Proceedings 10 (2023) 1–44. doi:10.55056/cte.544. [84] T. A. Vakaliuk, Editorial for JEC Volume 2 Issue 2 (2023), Journal of Edge Computing 2 (2023) 102–103. doi:10.55056/jec.654. [85] T. A. Vakaliuk, S. O. Semerikov, Introduction to doors Workshops on Edge Computing (2021-2023), Journal of Edge Computing 2 (2023) 1–22. doi:10.55056/jec.618. [86] A. I. Jony, A. K. B. Arnob, A long short-term memory based approach for detecting cyber attacks in IoT using CIC-IoT2023 dataset, Journal of Edge Computing (2024). doi:10.55056/jec.648. [87] I. A. Pilkevych, D. L. Fedorchuk, M. P. Romanchuk, O. M. Naumchak, Approach to the fake news detection using the graph neural networks, Journal of Edge Computing 2 (2023) 24–36. doi:10.55056/jec.592. [88] N. M. Lobanchykova, I. A. Pilkevych, O. Korchenko, Analysis and protection of IoT systems: Edge computing and decentralized decision-making, Journal of Edge Computing 1 (2022) 55–67. doi:10.55056/jec.573. [89] N. Balyk, S. Leshchuk, D. Yatsenyak, Design and implementation of an IoT-based educa- tional model for smart homes: a STEM approach, Journal of Edge Computing 2 (2023) 35148–162. doi:10.55056/jec.632. [90] A. V. Ryabko, O. V. Zaika, R. P. Kukharchuk, T. A. Vakaliuk, Graph theory methods for fog computing: A pseudo-random task graph model for evaluating mobile cloud, fog and edge computing systems, Journal of Edge Computing 1 (2022) 1–16. doi:10.55056/jec.569. [91] T. A. Uzdenov, A new approach for dispatching task flows in GRID systems with inalien- able resources, Journal of Edge Computing 1 (2022) 68–80. doi:10.55056/jec.574. [92] A. V. Riabko, T. A. Vakaliuk, O. V. Zaika, R. P. Kukharchuk, V. V. Kontsedailo, Investigating the effect of virtual machine migration accounting on reliability using a cluster model, Journal of Edge Computing 2 (2023) 37–63. doi:10.55056/jec.585. [93] O. V. Talaver, T. A. Vakaliuk, Reliable distributed systems: review of modern approaches, Journal of Edge Computing 2 (2023) 84–101. doi:10.55056/jec.586. [94] T. Lorido-Botran, M. K. Bhatti, ImpalaE: Towards an optimal policy for efficient resource management at the edge, Journal of Edge Computing 1 (2022) 43–54. doi:10.55056/ jec.572. [95] M. V. Klymenko, A. M. Striuk, Design and implementation of an edge computing-based GPS tracking system, Journal of Edge Computing 2 (2023) 175–189. doi:10.55056/jec. 634. [96] A. R. Petrosian, R. V. Petrosyan, I. A. Pilkevych, M. S. Graf, Efficient model of PID controller of unmanned aerial vehicle, Journal of Edge Computing 2 (2023) 104–124. doi:10.55056/jec.593. [97] T. M. Nikitchuk, T. A. Vakaliuk, O. A. Chernysh, O. L. Korenivska, L. A. Martseva, V. V. Osadchyi, Non-contact photoplethysmographic sensors for monitoring students’ cardiovascular system functional state in an IoT system, Journal of Edge Computing 1 (2022) 17–28. doi:10.55056/jec.570. [98] T. M. Nikitchuk, O. V. Andreiev, O. L. Korenivska, M. G. Medvediev, Model of an automated biotechnical system for analyzing pulseograms as a kind of edge devices, Journal of Edge Computing 2 (2023) 64–83. doi:10.55056/jec.627. [99] O. L. Korenivska, V. B. Benedytskyi, O. V. Andreiev, M. G. Medvediev, A system for monitoring the microclimate parameters of premises based on the Internet of Things and edge devices, Journal of Edge Computing 2 (2023) 125–147. doi:10.55056/jec.614. [100] A. G. Tkachuk, M. S. Hrynevych, T. A. Vakaliuk, O. A. Chernysh, M. G. Medvediev, Edge computing in environmental science: automated intelligent robotic platform for water quality assessment, Journal of Edge Computing 2 (2023) 163–174. doi:10.55056/jec. 633. |
URI (Уніфікований ідентифікатор ресурсу): | https://ceur-ws.org/Vol-3662/paper00.pdf http://ds.knu.edu.ua/jspui/handle/123456789/5470 |
ISSN: | 1613-0073 |
Розташовується у зібраннях: | Кафедра професійної та соціально-гуманітарної освіти |
Файли цього матеріалу:
Файл | Опис | Розмір | Формат | |
---|---|---|---|---|
paper00.pdf | 5.25 MB | Adobe PDF | Переглянути/Відкрити |
Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.