Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
http://ds.knu.edu.ua/jspui/handle/123456789/3390
Назва: | Neural Network Analytics and Forecasting the Country's Business Climate in Conditions of the Coronavirus Disease (COVID-19) |
Автори: | Serhiy Semerikov, Hanna Kucherova, Vita Los, Dmytro Ocheretin |
Ключові слова: | Business climate Index Correlation analysis Indicators Taxonomic model Neural network model COVID-19 |
Дата публікації: | 2021 |
Видавництво: | CEUR Workshop Proceedings |
Бібліографічний опис: | Semerikov S. Neural Network Analytics and Forecasting the Country's Business Climate in Conditions of the Coronavirus Disease (COVID-19) [Electronic resource] / Serhiy Semerikov, Hanna Kucherova, Vita Los, Dmytro Ocheretin // Proceedings of the 7th International Conference "Information Technology and Interactions" (IT&I-2020). Workshops Proceedings. Kyiv, Ukraine, December 02-03, 2020 / Edited by : Vitaliy Snytyuk, Anatoly Anisimov, Iurii Krak, Mykola Nikitchenko, Oleksandr Marchenko, Frederic Mallet, Vitaliy Tsyganok, Aldrich Chris, Andreas Pester, Hiroshi Tanaka, Karsten Henke, Oleg Chertov, Sándor Bozóki, Vladimir Vovk // CEUR Workshop Proceedings. – 2021. – Vol. 2845. – P. 22-32. – Access mode : http://ceur-ws.org/Vol-2845/Paper_3.pdf |
Короткий огляд (реферат): | The prospects for doing business in countries are also determined by the business confidence index. The purpose of the article is to model trends in indicators that determine the state of the business climate of countries, in particular, the period of influence of the consequences of COVID-19 is of scientific interest. The approach is based on the preliminary results of substantiating a set of indicators and applying the taxonomy method to substantiate an alternative indicator of the business climate, the advantage of which is its advanced nature. The most significant factors influencing the business climate index were identified, in particular, the annual GDP growth rate and the volume of retail sales. The similarity of the trends in the calculated and actual business climate index was obtained, the forecast values were calculated with an accuracy of 89.38%. And also, the obtained modeling results were developed by means of building and using neural networks with learning capabilities, which makes it possible to improve the quality and accuracy of the business climate index forecast up to 96.22%. It has been established that the consequences of the impact of COVID-19 are forecasting a decrease in the level of the country's business climate index in the 3rd quarter of 2020. The proposed approach to modeling the country's business climate is unified, easily applied to the macroeconomic data of various countries, demonstrates a high level of accuracy and quality of forecasting. The prospects for further research are modeling the business climate of the countries of the world in order to compare trends and levels, as well as their changes under the influence of quarantine restrictions. |
URI (Уніфікований ідентифікатор ресурсу): | http://ceur-ws.org/Vol-2845/Paper_3.pdf http://ds.knu.edu.ua/jspui/handle/123456789/3390 |
ISSN: | 1613-0073 |
Розташовується у зібраннях: | Кафедра професійної та соціально-гуманітарної освіти Наукові статті |
Файли цього матеріалу:
Файл | Опис | Розмір | Формат | |
---|---|---|---|---|
Paper_3.pdf | article | 687.93 kB | Adobe PDF | Переглянути/Відкрити |
Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.