Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://ds.knu.edu.ua/jspui/handle/123456789/4984
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorSemerikov, Serhiy O.-
dc.contributor.authorVakaliuk, Tetiana A.-
dc.contributor.authorMintii, Iryna S.-
dc.contributor.authorHamaniuk, Vita A.-
dc.contributor.authorSoloviev, Vladimir N.-
dc.contributor.authorBondarenko, Olga V.-
dc.contributor.authorNechypurenko, Pavlo P.-
dc.contributor.authorShokaliuk, Svitlana V.-
dc.contributor.authorMoiseienko, Natalia V.-
dc.contributor.authorRuban, Vitalii R.-
dc.date.accessioned2023-01-02T09:53:55Z-
dc.date.available2023-01-02T09:53:55Z-
dc.date.issued2022-04-11-
dc.identifier.citationSemerikov S. O. Mask and Emotion: Computer Vision in the Age of COVID-19 / Serhiy O. Semerikov, Tetiana A. Vakaliuk, Iryna S. Mintii, Vita A. Hamaniuk, Vladimir N. Soloviev, Olga V. Bondarenko, Pavlo P. Nechypurenko, Svitlana V. Shokaliuk, Natalia V. Moiseienko, Vitalii R. Ruban // DHW 2021: Digital Humanities Workshop, Kyiv, Ukraine, 23 December 2021. – New York, NY, United States : Association for Computing Machinery, 2021. – P. 103-124. – DOI : 10.1145/3526242.3526263. – (ACM International Conference Proceeding Series)uk_UA
dc.identifier.isbn978-1-4503-8736-1-
dc.identifier.urihttp://ds.knu.edu.ua/jspui/handle/123456789/4984-
dc.description.abstractComputer vision systems since the early 1960s have undergone a long evolution and are widely used in various fields, in particular, in education for the implementation of immersive educational resources. When developing computer vision systems for educational purposes, it is advisable to use the computer vision libraries based on deep learning (in particular, implementations of convolutional neural networks). Computer vision systems can be used in education both under normal and pandemic conditions. The changes in the education industry caused by the COVID-19 pandemic have affected the classic educational applications of computer vision systems, modifying existing ones and giving rise to new ones, including social distancing, face mask recognition, intrusion detection in universities and schools, and vandalism prevention, recognition of emotions on faces with and without masks, attendance monitoring. Developed on the basis of Microsoft Cognitive Toolkit and deployed in the Microsoft Azure cloud, a prototype computer vision system integrates emotion recognition of students and detection of violations of the mask regime, additionally providing the ability to determine gender, smile intensity, average age, makeup, glasses, hair color, etc. with a high degree of reliability.uk_UA
dc.language.isoenuk_UA
dc.publisherAssociation for Computing Machineryuk_UA
dc.subjectcomputer visionuk_UA
dc.subjectCOVID-19uk_UA
dc.subjecteducationuk_UA
dc.subjectmask detectionuk_UA
dc.titleMask and Emotion: Computer Vision in the Age of COVID-19uk_UA
dc.typeArticleuk_UA
dc.identifier.doihttps://doi.org/10.1145/3526242.3526263-
local.submitter.emailsemerikov@ccjourn...uk_UA
Розташовується у зібраннях:Кафедра професійної та соціально-гуманітарної освіти

Файли цього матеріалу:
Файл Опис РозмірФормат 
paper38.pdf28.4 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.