Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://ds.knu.edu.ua/jspui/handle/123456789/3398
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorTsidylo, Ivan-
dc.contributor.authorSemerikov, Serhii-
dc.contributor.authorСемеріков, Сергій Олексійович-
dc.contributor.authorСемериков, Сергей Алексеевич-
dc.contributor.authorGargula, Tetiana-
dc.contributor.authorSolonetska, Hanna-
dc.contributor.authorZamora, Yaroslav-
dc.contributor.authorPikilniak, Andrii-
dc.contributor.authorПікільняк, Андрій Валерійович-
dc.contributor.authorПикильняк, Андрей Валерьевич-
dc.date.accessioned2021-06-21T19:06:58Z-
dc.date.available2021-06-21T19:06:58Z-
dc.date.issued2020-
dc.identifier.citationSimulation of intellectual system for evaluation of multilevel test tasks on the basis of fuzzy logic / Ivan M. Tsidylo, Serhiy O. Semerikov, Tetiana I. Gargula, Hanna V. Solonetska, Yaroslav P. Zamora, Andrey V. Pikilnyak // CTE 2020 : proceedings of the 8th workshop on cloud technologies in education, December 18, 2020, Kryvyi Rih, Ukraine. – 2020. – Vol. 2879. – P. 507–520. – (CEUR Workshop Proceedings). – Access mode : http://ceur-ws.org/Vol-2879/paper30.pdf.uk_UA
dc.identifier.issn1613-0073-
dc.identifier.urihttp://ceur-ws.org/Vol-2879/paper30.pdf-
dc.identifier.urihttp://ds.knu.edu.ua/jspui/handle/123456789/3398-
dc.description.abstractThe article describes the stages of modeling an intelligent system for evaluating multilevel test tasks based on fuzzy logic in the MATLAB application package, namely the Fuzzy Logic Toolbox. The analysis of existing approaches to fuzzy assessment of test methods, their advantages and disadvantages is given. The considered methods for assessing students are presented in the general case by two methods: using fuzzy sets and corresponding membership functions; fuzzy estimation method and generalized fuzzy estimation method. In the present work, the Sugeno production model is used as the closest to the natural language. This closeness allows for closer interaction with a subject area expert and build well-understood, easily interpreted inference systems. The structure of a fuzzy system, functions and mechanisms of model building are described. The system is presented in the form of a block diagram of fuzzy logical nodes and consists of four input variables, corresponding to the levels of knowledge assimilation and one initial one. The surface of the response of a fuzzy system reflects the dependence of the final grade on the level of difficulty of the task and the degree of correctness of the task. The structure and functions of the fuzzy system are indicated. The modeled in this way intelligent system for assessing multilevel test tasks based on fuzzy logic makes it possible to take into account the fuzzy characteristics of the test: the level of difficulty of the task, which can be assessed as “easy”, “average", “above average”, “difficult”; the degree of correctness of the task, which can be assessed as “correct”, “partially correct”, “rather correct”, “incorrect”; time allotted for the execution of a test task or test, which can be assessed as “short”, “medium”, “long”, “very long”; the percentage of correctly completed tasks, which can be assessed as “small”, “medium”, “large”, “very large”; the final mark for the test, which can be assessed as “poor”, “satisfactory”, “good”, “excellent”, which are included in the assessment. This approach ensures the maximum consideration of answers to questions of all levels of complexity by formulating a base of inference rules and selection of weighting coefficients when deriving the final estimate. The robustness of the system is achieved by using Gaussian membership functions. The testing of the controller on the test sample brings the functional suitability of the developed model.uk_UA
dc.language.isoenuk_UA
dc.publisherCEUR Workshop Proceedings (CEUR-WS.org)uk_UA
dc.subjectintelligent systemuk_UA
dc.subjectmultilevel test tasksuk_UA
dc.subjectfuzzy test characteristicsuk_UA
dc.subjectfuzzy assessmentuk_UA
dc.subjectSugeno inference systemuk_UA
dc.titleSimulation of intellectual system for evaluation of multilevel test tasks on the basis of fuzzy logicuk_UA
dc.typeArticleuk_UA
local.submitter.emailsemerikov@ccjourn...uk_UA
Розташовується у зібраннях:Кафедра професійної та соціально-гуманітарної освіти
Кафедра технології машинобудування
Наукові статті

Файли цього матеріалу:
Файл Опис РозмірФормат 
Simulation of intellectual system for evaluation of multilevel test tasks on the basis of fuzzy logic.pdfarticle1.37 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.