Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
http://ds.knu.edu.ua/jspui/handle/123456789/5493
Повний запис метаданих
Поле DC | Значення | Мова |
---|---|---|
dc.contributor.author | Semerikov, S. O. | - |
dc.contributor.author | Mintii, I. S. | - |
dc.date.accessioned | 2024-07-10T11:56:51Z | - |
dc.date.available | 2024-07-10T11:56:51Z | - |
dc.date.issued | 2024-05-24 | - |
dc.identifier.citation | Semerikov S. O. Automating literature screening with large language models // Semerikov S. O., Mintii I. S. // Conference proceedings of the VII International Scientific-Practical Conference “Information Technology for Education, Science and Technics” (ITEST-2024), (Cherkasy, May 23-24, 2024). – Cherkasy: ChSTU, 2024. – P. 130-132. | uk_UA |
dc.identifier.uri | https://itest.chdtu.edu.ua/Conference-Proceedings-ITEST-2024_25_06.pdf | - |
dc.identifier.uri | http://ds.knu.edu.ua/jspui/handle/123456789/5493 | - |
dc.description | 1. Mintii, M.M., 2023. Exploring the landscape of STEM education and personnel training: a comprehensive systematic review. Educational Dimension, 9, pp.149–172. Available from: https://doi.org/10.31812/ed.583 2. Hamaniuk, V.A., 2021. The potential of Large Language Models in language education. Educational Dimension, 5, pp.208–210. Available from: https://doi.org/10.31812/ed.650 | uk_UA |
dc.description.abstract | Screening research papers for inclusion in a literature review is a time-consuming manual process. We explore automating this process using OpenAI’s GPT-3.5 Turbo large language model (LLM). Given text prompts specifying the inclusion/exclusion criteria, the LLM evaluated the abstract of each paper. It is classified into one of four categories: meeting both criteria, violating the first criteria, violating the second criteria, or violating both criteria. Our Python code interfaced with the OpenAI API to pass paper abstracts as prompts to the LLM. For 347 papers, the LLM flagged 173 as meeting the criteria, with 3 additional papers included after accounting for missing abstracts, yielding 176 papers selected for full-text retrieval. A manual review of a sample suggested reasonable accuracy. While further validation is needed, this demonstrates LLMs’ potential for accelerating systematic literature reviews. | uk_UA |
dc.language.iso | en | uk_UA |
dc.publisher | ЧДТУ | uk_UA |
dc.subject | large language models | uk_UA |
dc.subject | GPT-3 | uk_UA |
dc.subject | literature review | uk_UA |
dc.subject | automation | uk_UA |
dc.subject | screening | uk_UA |
dc.subject | inclusion criteria | uk_UA |
dc.title | Automating literature screening with large language models | uk_UA |
dc.type | Article | uk_UA |
local.submitter.email | semerikov@ccjourn... | uk_UA |
Розташовується у зібраннях: | Кафедра професійної та соціально-гуманітарної освіти |
Файли цього матеріалу:
Файл | Опис | Розмір | Формат | |
---|---|---|---|---|
Conference-Proceedings-ITEST-2024_25_06-130-132.pdf | 635.63 kB | Adobe PDF | Переглянути/Відкрити |
Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.