Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://ds.knu.edu.ua/jspui/handle/123456789/5493
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorSemerikov, S. O.-
dc.contributor.authorMintii, I. S.-
dc.date.accessioned2024-07-10T11:56:51Z-
dc.date.available2024-07-10T11:56:51Z-
dc.date.issued2024-05-24-
dc.identifier.citationSemerikov S. O. Automating literature screening with large language models // Semerikov S. O., Mintii I. S. // Conference proceedings of the VII International Scientific-Practical Conference “Information Technology for Education, Science and Technics” (ITEST-2024), (Cherkasy, May 23-24, 2024). – Cherkasy: ChSTU, 2024. – P. 130-132.uk_UA
dc.identifier.urihttps://itest.chdtu.edu.ua/Conference-Proceedings-ITEST-2024_25_06.pdf-
dc.identifier.urihttp://ds.knu.edu.ua/jspui/handle/123456789/5493-
dc.description1. Mintii, M.M., 2023. Exploring the landscape of STEM education and personnel training: a comprehensive systematic review. Educational Dimension, 9, pp.149–172. Available from: https://doi.org/10.31812/ed.583 2. Hamaniuk, V.A., 2021. The potential of Large Language Models in language education. Educational Dimension, 5, pp.208–210. Available from: https://doi.org/10.31812/ed.650uk_UA
dc.description.abstractScreening research papers for inclusion in a literature review is a time-consuming manual process. We explore automating this process using OpenAI’s GPT-3.5 Turbo large language model (LLM). Given text prompts specifying the inclusion/exclusion criteria, the LLM evaluated the abstract of each paper. It is classified into one of four categories: meeting both criteria, violating the first criteria, violating the second criteria, or violating both criteria. Our Python code interfaced with the OpenAI API to pass paper abstracts as prompts to the LLM. For 347 papers, the LLM flagged 173 as meeting the criteria, with 3 additional papers included after accounting for missing abstracts, yielding 176 papers selected for full-text retrieval. A manual review of a sample suggested reasonable accuracy. While further validation is needed, this demonstrates LLMs’ potential for accelerating systematic literature reviews.uk_UA
dc.language.isoenuk_UA
dc.publisherЧДТУuk_UA
dc.subjectlarge language modelsuk_UA
dc.subjectGPT-3uk_UA
dc.subjectliterature reviewuk_UA
dc.subjectautomationuk_UA
dc.subjectscreeninguk_UA
dc.subjectinclusion criteriauk_UA
dc.titleAutomating literature screening with large language modelsuk_UA
dc.typeArticleuk_UA
local.submitter.emailsemerikov@ccjourn...uk_UA
Розташовується у зібраннях:Кафедра професійної та соціально-гуманітарної освіти

Файли цього матеріалу:
Файл Опис РозмірФормат 
Conference-Proceedings-ITEST-2024_25_06-130-132.pdf635.63 kBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.