Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
http://ds.knu.edu.ua/jspui/handle/123456789/5175
Назва: | Mathematical Model of a Two-Factor Transportation Problem With Weighting Coefficients |
Автори: | Vakaliuk, T. A. Chyzhmotria, O. V. Semerikov, S. O. Mintii, I. S. |
Ключові слова: | transportation problem mathematical model tariff matrix factor weighting coefficient transportation plan |
Дата публікації: | 27-лис-2023 |
Видавництво: | IEEE |
Бібліографічний опис: | Vakaliuk T. A. Mathematical Model of a Two-Factor Transportation Problem With Weighting Coefficients / T. A. Vakaliuk, O. V. Chyzhmotria, S. O. Semerikov, I. S. Mintii // 2023 IEEE 18th International Conference on Computer Science and Information Technologies (CSIT), Lviv, Ukraine. – 2023. – P. 1-6. – DOI : 10.1109/CSIT61576.2023.10324171 |
Короткий огляд (реферат): | The article presents a two-factor transportation problem with weighting coefficients, which is formulated as a problem of finding the most profitable plan for the transportation of homogeneous cargo from points of departure to points of consumption in the conditions of two factors and the presence of weighting coefficients. The task is to develop a mathematical model of this problem. It is proposed to use the method of reducing the initial problem to the form of a classical transportation problem for the use of any of the existing solution algorithms in the future. The content of the developed step-by-step algorithm for reducing a two-factor transportation problem with weighting coefficients to the form of a classical transportation problem is presented, and the corresponding general scheme is given. The conclusions are drawn and the advantages of developing a software product for solving a two-factor transportation problem with weighting coefficients using the developed method are argued. |
Опис: | [1] O. Pavlenko, D. Velykodnyi, O. Lavrentieva, and S. Filatov, “The Procedures of Logistic Transport Systems Simulation into the Petri Nets Environment,” CEUR Workshop Proceedings, vol. 2732, pp. 854–868, 2020. [2] V. Aulin, A. Hrynkiv, O. Lyashuk, Y. Vovk, S. Lysenko, D. Holub, T. Zamota, A. Pankov, M. Sokol, V. Ratynskyi, and O. Lavrentieva, “Increasing the Functioning Efficiency of the Working Warehouse of the “UVK Ukraine” Company Transport and Logistics Center,” Communications - Scientific Letters of the University of Zilina, vol. 22, no. 2, pp. 3–14, 2020. [3] S. O. Semerikov, T. A. Vakaliuk, I. S. Mintii, and S. O. Didkivska, “Challenges facing distance learning during martial law: results of a survey of Ukrainian students,” Educational Technology Quarterly, Oct. 2023. [Online]. Available: https://doi.org/10.55056/etq.637 [4] A. Burduk and K. Musiał, “Optimization of chosen transport task by using generic algorithms,” in Computer Information Systems and Industrial Management, K. Saeed and W. Homenda, Eds. Cham: Springer International Publishing, 2016, pp. 197–205. [5] V. Prifti, I. Dervishi, K. Dhoska, I. Markja, and A. Pramono, “Minimization of transport costs in an industrial company through linear programming,” IOP Conference Series: Materials Science and Engineering, vol. 909, no. 1, p. 012040, dec 2020. [6] P. C. Pop, C. Sabo, B. Biesinge, B. Hu, and G. R. Raidl, “Solving the two-stage fixed-charge transportation problem with a hybrid genetic algorithm,” Carpathian Journal of Mathematics, vol. 33, no. 3, pp. 364–370, 2017. [7] O. Chyzhmotria, O. Chyzhmotria, and T. A. Vakaliuk, “Algorithm of Analysis and Conversion of Input Data of a Two-factor Multivariative Transport Problem with Weight Coefficients,” in Proceedings of The Fourth International Workshop on Computer Modeling and Intelligent Systems (CMIS-2021), Zaporizhzhia, Ukraine, April 27, 2021, ser. CEUR Workshop Proceedings, S. Subbotin, Ed. CEUR-WS.org, 2021, vol. 2864, pp. 455–464. [Online]. Available: https://ceur-ws.org/Vol-2864/paper40.pdf [8] P. Pandian and G. Natarajan, “Solving Two Stage Transportation Problems,” in Control, Computation and Information Systems, P. Balasubramaniam, Ed. Berlin, Heidelberg: Springer, 2011, pp. 159–165. [9] E. Garajová and M. Rada, “Interval transportation problem: feasibility, optimality and the worst optimal value,” Central European Journal of Operations Research, vol. 31, no. 3, pp. 769–790, Sep 2023. [10] O. Cosma, P. C. Pop, and C. Sabo, “An Efficient Hybrid Genetic Algorithm for Solving a Particular Two-Stage Fixed-Charge Transportation Problem,” in Hybrid Artificial Intelligent Systems, H. Pérez Garcı́a, L. Sánchez González, M. Castejón Limas, H. Quintián Pardo, and E. Corchado Rodrı́guez, Eds. Cham: Springer, 2019, pp. 157–167. [11] Y. Deng, Y. Zheng, and J. Li, “Route optimization model in collaborative logistics network for mixed transportation problem considered cost discount based on GATS,” Journal of Ambient Intelligence and Humanized Computing, vol. 10, no. 1, pp. 409–416, Jan 2019. [12] M. R. Islam, M. R. Mahmud, and R. M. Pritom, “Transportation scheduling optimization by a collaborative strategy in supply chain management with TPL using chemical reaction optimization,” Neural Computing and Applications, vol. 32, no. 8, pp. 3649–3674, Apr 2020. [13] S. Gupta, H. Garg, and S. Chaudhary, “Parameter estimation and optimization of multi-objective capacitated stochastic transportation problem for gamma distribution,” Complex & Intelligent Systems, vol. 6, no. 3, pp. 651–667, Oct 2020. [Online]. Available: https://doi.org/10.1007/s40747-020-00156-1 [14] P. I. Stetsiuk, O. P. Bysaha, and S. S. Tregubenko, “Two-stage transportation problem with constraint on the number of intermediate locations,” Computer mathematics, vol. 2, pp. 119–128, 2018 |
URI (Уніфікований ідентифікатор ресурсу): | https://doi.org/10.1109/CSIT61576.2023.10324171 http://ds.knu.edu.ua/jspui/handle/123456789/5175 |
ISBN: | 979-8-3503-6046-2 979-8-3503-6045-5 979-8-3503-6047-9 |
ISSN: | 2766-3639 2766-3655 |
Розташовується у зібраннях: | Кафедра професійної та соціально-гуманітарної освіти |
Файли цього матеріалу:
Файл | Опис | Розмір | Формат | |
---|---|---|---|---|
conference_paper.pdf | 192.78 kB | Adobe PDF | Переглянути/Відкрити |
Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.