Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://ds.knu.edu.ua/jspui/handle/123456789/3080
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorSoloviev, Vladimir-
dc.contributor.authorBielinskyi, Andrii-
dc.contributor.authorSerdyuk, Oleksandr-
dc.contributor.authorSolovieva, Victoria-
dc.contributor.authorSemerikov, Serhii-
dc.contributor.authorСемеріков, Сергій Олексійович-
dc.contributor.authorСемериков, Сергей Алексеевич-
dc.date.accessioned2020-12-24T18:45:04Z-
dc.date.available2020-12-24T18:45:04Z-
dc.date.issued2020-
dc.identifier.citationLyapunov Exponents as Indicators of the Stock Market Crashes [Electronic resource] / Vladimir Soloviev, Andrii Bielinskyi, Oleksandr Serdyuk, Victoria Solovieva, Serhiy Semerikov // ICTERI 2020: ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer 2020 : proceedings of the 16th International conference on ICT in education, research and industrial applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshops. Kharkiv, Ukraine, October 06-10, 2020. – (CEUR Workshop Proceedings). – 2020. – Vol. 2732. – P. 455–470. – Access mode : http://ceur-ws.org/Vol-2732/20200455.pdf.uk_UA
dc.identifier.issn1613-0073-
dc.identifier.urihttp://ceur-ws.org/Vol-2732/20200455.pdf-
dc.identifier.urihttp://ds.knu.edu.ua/jspui/handle/123456789/3080-
dc.description.abstractThe frequent financial critical states that occur in our world, during many centuries have attracted scientists from different areas. The impact of similar fluctuations continues to have a huge impact on the world economy, causing instability in it concerning normal and natural disturbances [1]. The anticipation, prediction, and identification of such phenomena remain a huge challenge. To be able to prevent such critical events, we focus our research on the chaotic properties of the stock market indices. During the discussion of the recent papers that have been devoted to the chaotic behavior and complexity in the financial system, we find that the Largest Lyapunov exponent and the spectrum of Lyapunov exponents can be evaluated to determine whether the system is completely deterministic, or chaotic. Accordingly, we give a theoretical background on the method for Lyapunov exponents estimation, specifically, we followed the methods proposed by J. P. Eckmann and Sano-Sawada to compute the spectrum of Lyapunov exponents. With Rosenstein’s algorithm, we compute only the Largest (Maximal) Lyapunov exponents from an experimental time series, and we consider one of the measures from recurrence quantification analysis that in a similar way as the Largest Lyapunov exponent detects highly non-monotonic behavior. Along with the theoretical material, we present the empirical results which evidence that chaos theory and theory of complexity have a powerful toolkit for construction of indicators-precursors of crisis events in financial markets.uk_UA
dc.language.isoenuk_UA
dc.publisherCEUR Workshop Proceedingsuk_UA
dc.subjectComplex dynamic systemsuk_UA
dc.subjectunstableuk_UA
dc.subjectchaoticuk_UA
dc.subjectrecurrence plotuk_UA
dc.subjectLyapunov exponentsuk_UA
dc.subjectstock market crashuk_UA
dc.subjectindicator of the crashuk_UA
dc.titleLyapunov Exponents as Indicators of the Stock Market Crashesuk_UA
dc.typeArticleuk_UA
local.submitter.emailsemerikov@ccjourn...uk_UA
Розташовується у зібраннях:Кафедра професійної та соціально-гуманітарної освіти
Наукові статті

Файли цього матеріалу:
Файл Опис РозмірФормат 
Lyapunov Exponents as Indicators of the Stock Market Crashes.pdfarticle1.28 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.