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Abstract—Entropy is one of the most frequently and 

effectively used measure of the complexity of systems of 

various nature. And if the Shannon's canonical entropy is more 

a measure of the randomness of the system, then the 

approximate, sample, permutation and other new type entropy 

that have appeared recently, exploiting the Shannon entropy 

form have allowed us to quantify the complexity of the systems 

in question using fast and efficient algorithms. For the first 

time, a new type of recurrence entropy is used to analyze the 

dynamics of financial time series under crashes conditions. It is 

shown that recurrent entropy can be used as the indicator-

predictor of financial crashes. 

Keywords—recurrence plot, recurrence quantification 

analysis, recurrence entropy. 

I. INTRODUCTION  

During last few decades the behavior of global financial 
system attracted considerable attention. Wild fluctuations in 
stock prices lead to sudden trend switches in a number of 
stocks and continue to have a huge impact on the world 
economy causing the instability in it with regard to normal 
and natural disturbances [1]. The reason of this problem is 
the crisis of methodology modeling, forecasting and 
interpretation of socio-economic realities. The doctrine of the 
unity of the scientific method states that for the study of 
events in socio-economic systems, the same methods and 
criteria as those used in the study of natural phenomena are 
applicable. Similar idea has attracted considerable attention 
by the community from different branches of science in 
recent years [2]. 

The increasing mathematical knowledge of the complex 
structures of nonlinear systems has provided successful tools 
to the understanding of irregular space and temporal 
behaviors displayed by collected data in all applied sciences. 
Time series analysis has turned to be a key issue providing 
the most direct link between nonlinear dynamics and the real 
world [3]. Among the many methods of analysis of complex 
nonlinear, non-stationary emergent signals, which are the 
signals of complex systems, those that adequately reflect the 
spatial and temporal manifestations of complexity are 
especially popular [4]. In this case, the search for such 
quantitative measures of complexity that adequately reflect 

the dynamics of processes taking place in a complex system 
is relevant. Financial systems being complex dynamic 
objects exhibit unexpected critical phenomena, which are 
most clearly manifested in the form of crashes. Over the past 
20 years, these are the global currency crisis of 1998, the 
collapse of the dotcoms 2001, the global financial crisis of 
2008, the European debt crisis of 2012, the Chinese crisis of 
2015-2016 and the crisis of the US stock market in early 
2019 [5]. For this reason, it is extremely important to 
highlight such measures of complexity that are sensitive to 
critical phenomena and can serve as their predictors [6, 8].  

In this paper, we will consider the possibilities of new 
entropy indicators of the systems complexity, calculated in 
the phase space, and examine their capabilities with respect 
to the prevention of crisis phenomena. 

II. THE RECURRENCE BASED ENTROPY 

In recent years, new quantifiers of nonlinear time series 
analysis have appeared based on properties of phasespace 
recurrences [7]. According to stochastic extensions to 
Taken's embedding theorems the embedding of a time series 
in phase space can be carried out by forming time-delayed 

vectors 2 ( 1)[ , , ,..., ]n n n n n MX x x x x      for each value xn in 

the time series, where M is the embedding dimension, and τ 
is the embedding delay. These parameters are obtained by 
systematic search for the optimal set. Figure 1 shows a phase 
portrait of the normalized logarithmic returns of the time 
series of bitcoin (BTC) prices for the period July 17, 2010 to 
August 30, 2019.  

A modern visualization method known as recurrence plot 

(RP), and is constructed from the recurrence matrix ijR  

defined as ( ) ( ), , , 1,2,..., ,ij i j iR x x x i j M        

where ix  and jx represent the dynamical state at time i  and 

j ,   is the Heaviside function, M  is length of theanalyzed 

time series and   is the threshold or vicinity parameter, 

consisting of a maximum distance between two points in a 
trajectory such that both points can be considered recurrent 
to each other. 
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The recurrence plot for the phase portrait of Figure 1 is 
presented in Figure 2. 

 

Fig. 1. A phase portrait of the normalized logarithmic returns of the 

daily values BTC/$ for the period July 17, 2010 to August 30, 2019.  

The graphical representation of the RP allows to derive 
qualitative characterizations of the dynamical systems. For 
the quantitative description of the dynamics, the small-scale 
patterns in the RP can be used, such as diagonal and vertical 
lines. The histograms of   the lengths of these lines are the 
base of the recurrence quantification analysis 
(RQA)developed by Webber and Zbilut and later by Marwan 
et al. [7]. Based on the statistical properties of the recurrence 
plot, a large number of quantifiers have been developed to 
analyze details of a RP. Many of them, deal with statistical 
properties such as mean size, maximum size, frequency of 
occurrence of diagonal, vertical or horizontal recurrence 
lines.  

 

Fig. 2. Recurrence plot of daily values of BTC/$ price fluctuations.  

An important class of recurrence quantifiers are those 
that try to capture the level of complexity of a signal. As an 
example, we mention the already known entropy based on 
diagonal lines statistics. This quantity has been correlated 
with others dynamical quantifiers as, for example, the largest 
Lyapunov exponent,  since both capture properties of the 
complexitylevel of the dynamics. The vertical (horizontal) 

lines in ijR  are associated to laminar states, common in 

intermittent dynamics [7]. It was reported the use of the 

distribution of diagonal lines ( )P l  for a different quantifier 

of recurrences, based on the Shannon entropy [7]. If we 

choose a distribution of diagonals 
1

( ) ( ) / ( )
K

l
p l P l P l


  for 

K  the maximum length of the diagonal lines, then we get 
one of the known quantitative indicators of recurrence 

analysis: 
max

min

( ) ln ( )
l l

l l
ENTR p l p l




  . However, as follows 

from the analysis of entropy indicators, the results are not 
always possible to coordinate with the proposed models. 

To the pleasure of the researchers, it turned out that 
depending on the technology of using the properties of the 
recurrence of the phase space, different types of recurrence 
entropies are distinguished [9]. 

A. Recurrence probability (period) density entropy 

Recurrence probability (or period) density entropy 
(RPDEn) is useful for characterising the extent to which a 
time series repeats the same sequence [10, 11, 19] and is, like 
the ENTR a quantitative characteristic of recurrence analysis. 

Around each point 
nx  in the phase space, an  -

neighbourhood (an m -dimensional ball with this radius) is 

formed, and every time the time series returns to this ball, 
after having left it, the time difference T between successive 
returns is recorded in a histogram. This histogram is 
normalised to sum to unity, to form an estimate of the 
recurrence period density function P(T). The normalised 

entropy of this density 
max

1

max

1

(ln ) ( ) ln ( )
T

norm

t

H T P t P t



    is 

the RPDEn value, where maxT is the largest recurrence value.  

B. Recurrence entropy 

Recent works [12, 13] presents a slightly different 
technique for calculating recurrent entropy using a novel way 
to extract information from the recurrence matrix. The 
authors have generalize these concepts recurrence defining 

recurrence microstates ( )F   as all possible cross-recurrence 

states among two randomly selected short sequences of N  

consecutive points in a K  ( K N ) length time series, 

namely ( )F   are N N  small binary matrices. The total 

number of microstates for a given N  is 
2

2N

msN  . The 

microstates are populated by N random samples obtained 

from the recurrence matrix such that
1

msN

ii
N n


 , where in  

is the number of times that a microstate i  is observed. For 

/i iP n N , the probability related to the microstate i , we 

define an entropy of the RP associated with the probabilities 

of occurrence of a microstate as 
1

( ) ln
msN

ms i i

i

S N P P


 . 

III. RECURRENCE ENTROPY FOR CRASH TIME SERIES 

To study the recurrence entropy properties of time series, 
including periods of crisis, the following databases have been 
prepared. The first database included fragments of the Dow 
Jones index for the famous crashes of 1929, 1987, and 2008. 
In a number of daily values of the DJIA index of 2000 days 
long, the actual day of the onset of the crash falls at point 
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1000 (Figure 3). In this case, the fixed point of crashes can 
easily observe the indicator capabilities of entropy measures 
of complexity. 

 

Fig. 3. Fragments of DJIA index with crash at 1000 days.  

The following database contains the same length daily 
values (from March 3, 1990 to August 30, 2019) of the US 
stock market indices (DJIA), Germany (DAX), France 
(CAC), used to check the universality of the complexity 
measure regardless of the index. The index DJIA is also 
taken for the period from January 1, 1983 to August 30, 2019 
in order to cover the crises of 1987 and 1998. 

The third database includes the values of daily Bitcoin 
prices for the entire observation period (from July 17, 2010) 
and for a shorter period of stabilization of the cryptocurrency 
market from January 1, 2013 to August 30, 2019. 

Calculations of recurrent entropy measures of 
complexitywere carried out within the framework of 
amoving (sliding) window algorithm. For this purpose, the 
part of the time series (window), for whichthere were 
measures of complexity (RPDEn, RecEn), was selected, then 
the windowwas displaced along the time series in a one-day 
increment and the procedure repeateduntil all the studied 
series had exhausted. Further, comparing the dynamics of 
theactual time series and the corresponding measures of 
complexity, we can judge thecharacteristic changes in the 
dynamics of the behavior of complexity with changes inthe 
time series. If this or that measures of complexity behaves in 
a definite wayfor all periods of crisis, for example, decreases 
or increases during the pre-crisis period,then it can serve as 
an indicator or precursor of such a crisis phenomenon. 

In Figure 4 presents the results of calculations RPDEn 
and RecEn for the first database with a length of 2000 days. 
The calculations were carried out for a sliding window size 
of 250 days and a step of 1 day. It can be seen from the 
figure that the recurrence entropy in the pre-crisis period is 
markedly reduced for all crisis events, which is obviously a 
precursor of such crisis phenomena. As for RPDEn, such an 
unambiguous precursor is not observed. 

Therefore, further we focus on the use of RecEn, leaving 
for the future a more complete study of RPDEn. 

In Figure 5 shows the RecEn dynamics for the long index 
DJIA, which includes the last seven well-known crashes 
(shown in the Figure). 

 

a) 

 

b) 

Fig. 4. Window recurrence measures of complexity for the crashes of 

1929, 1987, and 2008. a) RPDEn, b) RecEn. The start point of the 

crash is marked.  

 

Fig. 5. Comparative dynamics of index DJIA and recurrence entropy 

RecEn.  

Obviously, in this case, RecEn is the precursor of crash 
events in all these cases. 

In order to once again verify the universality of RecEn as 
an indicator-precursor of financial crahes, we examined its 
dynamics for various stock indices. As an example, the 
selected indices are the stock markets of the USA (S&P 
500), Germany (DAX) and France (CAC) for a comparable 
period of time (Figure 6). 
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Fig. 6. The dynamics of the stock index S&P 500 and its corresponding 

and also the indices of the DAX and CAC of recurrence entropy.  

Finally, the analysis of a very volatile cryptocurrency 
market for BTC/$ data with small window values (50 days) 
also allows us to identify the main crisis falls in this market 
(Figure 7). 

 
Fig. 7. Comparison of the dynamics of the BTC/$ price with the 

corresponding recurrence entropy.  

The periodization of bitcoin crises, which we conducted 

earlier, indicates that recurrent entropy in this case is also a 

harbinger of crisis phenomena.  

IV. CONCLUSION 

Thus, we have demonstrated that the entropy analysis of 
financial time series in phase space reveals the characteristic 
recurrent properties of complex systems. It turned out that 
recurrent entropy, unlike other entropy indicators of 
complexity, is an indicator and an early harbinger of crisis 
phenomena. The recurrence entropy methodology has 
several advantages compared to the traditional recurrence 
entropy defined in the literature, namely, the correct 
evaluation of the chaoticity level of the signal, the weak 
dependence on parameters.  

In the future, a thorough comparative analysis of the 
possibilities of recurrent entropy with other promising types 
of entropy indicators of complexity should be carried out [14 
- 18]. 
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