- 12. Учитель А.Д., Гущин В.В. Вибрационный выпуск горной массы / А.Д. Учитель, В.В. Гущин. М.: Недра, 1981. 232 с.
- 13. Спиваковский А. О., Гончаревич И. Ф. Вибрационные конвейеры, питатели и вспомогательные устройства/ А. О. Спиваковский, И. Ф. Гончаревич.- М.:Машиностроение,1972 .-327 с.
- 14. **Потураев В. Н., Белобров В. И., Михайлеченко Е. И.** Анализ динамики механических систем на аналоговых ЭВМ / **В. Н. Потураев, В. И. Белобров, Е. И. Михайлеченко**. К.:Вища школа,1989 .-150 с.
- 15. Потураев В. Н., Франчук В. П., Червоненко А. Г. Вибрационные транспортирующии машины: основы теории и расчета/В. Н. Потураев, В. П. Франчук, А. Г. Червоненко.-М.:Машиностроение,1964 .-272 с.
- 16. **Потураев В. И., Дырда В. И., Надутый В. П.** Резина в горном деле/ **В. Н. Потураев, В. И. Дырда, В. П. Надутый. -** М.:Недра,1974 .-152 с.
 - 17. Потураев В. Н. Резиновые и резино-металлические детали машин.-М.:Машиностроение, 1966. 299 с.
- 18. **Нарышкин В. Н., Коросташевский Р. В.** Подшипники качения: Справочник-каталог /**Под ред. В. Н. Нарышкина и Р. В. Коросташевского.** М.: Машиностроение, 1984. 280 с.
 - 19. Классификатор ЕСКД: Класс 31:Подшипники качения 1.79.100 .-М.:Изд-во стандартов, 1988 .-77 с.
- 20. Гармаш Н. И., Новак С. Б., Савицкий В. Е., Савицкий Е. В. Подшипники скольжения и качения/Н.И. Гармаш, С.Б. Новак и др.. Кривой Рог, 2003 447 с.

Рукопис подано до редакції 04.03.14

УДК 622.271

А.Ю.АНТОНОВ, Ю.С.МЕЦ, доктора техн. наук, проф. Криворожский национальный университет

ПРЕДПРОЕКТНЫЕ ИССЛЕДОВАНИЯ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ РАЗРАБОТКИ ПЕТРОВСКОГО МЕСТОРОЖДЕНИЯ КАРЬЕРОМ №3

Описаны основные принципы повышения эффективности разработки Петровского железорудного месторождения путем перехода на уступы высотой 30 м, увеличением крутизны бортов, применением комплекса буровзрывных работ, транспортированием горной массы крутонаклонными конвейерами поверхностного размещения.

Проблема и ее связь с научными и практическими задачами. С переходом к отработке глубоких горизонтов карьера становится очевидным, что непринятие мер по изменению параметров общепринятых элементов систем разработки приведет к ухудшению условий ведения горных работ.

Имеющийся наличный парк горнотранспортного оборудования на карьере и его типоразмеры с ухудшающимися с глубиной условиями работы предопределили усложнение организационной взаимосвязи технологических систем и ухудшение технико-экономических показателей его работы.

Необходимо также отметить, что с увеличением глубины карьера происходит постоянный рост объемов разработки вскрышных пород на глубоких горизонтах. Выходом из сложившейся ситуации может служить переход на отработку месторождения уступами увеличенной высоты.

В это же время разработка железистых кварцитов Петровского месторождения карьером №3 ведется с применением уступов высотой 15 м по скальным породам и по руде, а по рыхлой вскрыше (верхние горизонты) высотой уступов 10 м.

В России и в других странах внедряется технология с применением уступов высотой 30м и отработкой их экскаваторами ЭГ-12АУ, RH 170 фирмы Катерпиллер, а также ЭКГ-8И, ЭКГ-12,5 и др., что позволило существенно изменить параметры систем разработки и улучшить технико-экономические показатели отработки месторождений [1,2].

Анализ исследований и публикаций. К настоящему времени накоплен определенный опыт по отработке уступов увеличенной высоты. Так, на верхних горизонтах карьеров ЦГОК, ИнГОК, ЮГОК, Первомайского СевГОКа и карьера №3 НКГОКа успешно была проведена проверка взрывания и отработка уступов высотой 25-30 м [3,4].

Перевод Сибайского и Коршуновского карьеров с 15 на 20-метровые уступы позволил повысить производительность на транспортном комплексе за счет сокращения длины транспортных коммуникаций, объема путевых и вспомогательных работ на уступах, а также увеличить производительность бурового станка по горной массе в результате сокращения перебуров и времени на вспомогательные операции [5,6].

С переходом к отработке уступов с 12 на 15-метровые среднемесячная производительность

экскаватора изменялась со 125 до 133 тыс. м³.

Изложенное подтверждает положительное влиянии перевода вспомогательного оборудования к отработке уступов увеличенной высоты и замене бурового и горнотранспортного оборудования [7,8].

Постановка задачи. Задание исследований - совершенствование работы железорудного карьера №3 Петровского месторождения на основе циклично-поточной технологии с переходом на уступы высотой 30м, увеличенной крутизны бортов и использования крутонаклонных конвейеров поверхностного размещения с учетом результатов ранее проведенных исследований [9,10] стойкости бортов и уступов при различной их высоте и крутизне на различных глубинах с учетом физико-механических характеристик пород; обобщены результаты теории и практики стойкости уступов и бортов в разных горно-технических условиях, а также влияния взаимодействия скважинных зарядов и элементов их конструкций на степень нарушенности приконтурной зоны. Разработана технология ведения горных работ [1,11].

Изложение материала и результаты. Как установлено, с увеличением высоты уступа снижаются затраты на буровзрывные работы, уменьшается количество рабочих горизонтов в карьере, что приводит к снижению себестоимости транспортирования горной массы, увеличивается угол откоса рабочего борта карьера, а значит уменьшается текущий коэффициент вскрыши и, в целом, повышается эффективность разработки месторождения.

Учитывая вышеизложенное, дальнейшую разработку карьера №3 рекомендуется вести уступами высотой 30 м с разделением на подуступы. Нижний подуступ разрабатывается продольными заходками, верхний - поперечными заходками (при автомобильном транспорте) длиной, равной ширине развала минус ширина подпорной стенки на этом подуступе; при железнодорожном транспорте - двумя продольными заходками. Предложенная схема обеспечивает безопасную работу экскаваторов.

Формирование откосов сдвоенных и строенных уступов с углами погашения 50-70° осуществляется в следующей последовательности:

постановка сдвоенных (H_y =30 м) и строенных (H_y =45 м) уступов в предельное положение с углами погашаемых откосов 50,55,60,65 и 70° производится с применением предварительного щелеобразования [12-14];

минимальная ширина приконтурной зоны R, при которой создание отрезной щели (ОЩ) является обязательным, составляет 30 м;

бурение скважин ОЩ при сдваивании и страивании уступов с углом наклона (погашения) 50° производится станком с глубиной бурения до 60 м под углом 55° на всю высоту уступа (30-45 м); на высоту подуступов (h=15 м) под углом 60° , при этом верхний подуступ обуривается обычно станком СБШ-250МH, нижние подуступы - станком бурения «под себя»;

скважины ОЩ на уступах с углом погашения 70° при H_y =30 м бурятся под углом 75° , при H_y =45 м верхний подуступ обуривается под углом 75° , нижний - вертикальными скважинами; расстояние между скважинами ОЩ 2,5 м при их диаметре 100-200 мм, величина перебура 3 м.

Минимальное расстояние между экраном и технологическими скважинами 2 м. Длина отрезной щели превышает длину взрываемого блока на защищаемом фланге уступа на половину ширины блока.

Заряжание скважин ОЩ производится рассредоточенными зарядами из тротиловых шашек (заряд – гирлянда). Величина линейного заряда в скважинах ОЩ должна находится в пределах 3,5-4,0 кг /пог. м. Диаметр шлангового заряда при плотности заряжания ВВ 900 кг/м³ в зависимости от величины линейного заряда находится в пределах 70-76 мм. Взрывание заряда в скважинах отрезной щели мгновенное и производится за 5-7 дней до технологического взрыва в приконтурной зоне. Параметры приконтурной зоны и порядок ее отработки.

Отработка приконтурной зоны ведется двумя полосами. Первая полоса включает в себя не более четырех рядов скважин, вторая полоса, непосредственно примыкающая к ОЩ, также включает в себя (с учетом коротких скважин) не более 3-4 рядов. Буровзрывные работы осуществляются по сетке соответствующей категории пород по взрываемости и принятой на карьере. В крепких трудновзрываемых породах расстояние между короткими скважинами в ряду может быть уменьшено. Схема коммутации зарядов в скважинах приконтурной зоны диагональная. Величина замедления между ступенями взрывания 20-35 мс [15,16]. Взрывание скважин второй полосы производится только на подобранный забой. Отгрузка пород первого подуступа (верх-

него) во второй полосе производится экскаватором ЭКГ -8И слоями равной мощности (hc=6-8м). Отгрузка пород нижних подуступов может производиться на полную высоту подуступа (h=15м) без разделения на слои.

Прогнозирование устойчивости бортов карьера №3 при переходе на глубины 300-500 м.

Согласно проведенных исследований приведенные углы погашения бортов карьера приняты: северного - 44°, южного - 34°, восточного - 34-40°, западного - 40°. Расчеты показывают, что предлагаемая технология работы карьера уступами высотой 30м, при которой углы откосов бортов карьера увеличатся на 4° против существующей традиционной технологии с высотой уступа 15 м позволит уменьшить объем вскрышных пород на 5-6%.

Постановку сдвоенных уступов (H_y =30 м) в предельное положение с углами погашенных откосов 50-70° необходимо производить с применением предварительного щелеобразования. Опыт заоткоски уступов карьеров показывает, что применение вертикальных отбойных скважин не позволяет формировать наклонные поверхности скальных уступов под откосами более 40-45° из-за сложного структурного строения массива горных пород и его нарушенности сериями массовых взрывов [17,18].

Определение ширины рабочих площадок с применением гидравлических экскаваторов.

Существующий экскаваторный парк представлен в основном экскаваторами ЭКГ-8И. Замену устаревших экскаваторов рекомендуется осуществлять на более совершенные гидравлические экскаваторы. Карьерные прямые и обратные лопаты типа гидравлических созданы в России. Базовая модель ЭГ-12АУ с челюстным ковшом и электрогидравлическим приводом имеет унифицированное ходовое оборудование с мехлопатой ЭКГ-5А. Обратная лопата ЭГО-8У является модификацией прямой ЭГ-12АУ. Степень унификации по гидроприводу — 100%, по механической части — около 85%.

Гидравлические экскаваторы по сравнению с канатными относятся к оборудованию нового технического уровня (табл. 1). Они находят все более широкое применение в мировой практике открытых горных работ. Гидравлические экскаваторы имеют в два раза меньшую массу, усилие копания на 25% больше, чем у канатных экскаваторов с одинаковой вместимостью ковша. Кроме того, уменьшается износ зубьев и режущей кромки ковша, отпадает необходимость в замене канатов.

Одновременно с вводом в эксплуатацию гидравлических экскаваторов следует переходить на разработку месторождения высокими уступами. Взрывание высоких уступов уменьшает удельную энергоемкость разрушения пород взрывом, которая учитывается умножением на коэффициент K_{ν} , определяемый по формуле

$$K_y = 1.03\sqrt{15/H_y},$$

где H_v – высота уступа, м.

Значение этого коэффициента для высоты уступа 15 м составляет 1,03, а для высоты уступа 30м - 0,86, следовательно, энергоемкость разрушения пород взрывом при увеличении высоты уступа от 15 до 30 м снижается на 16,5 %.

Сравнительные технико-экономические показатели рассматриваемых экскаваторов

Показатели	ЭКГ-8И	ЭГО-8У	ЭГ-12АУ
Техническая производительность, м ³ /ч	720	1100	1260
Расход электроэнергии на выемку и	0,83	0,56	0,58
погрузку породы, кВтч/м ³			

Транспортная система карьера рассмотрена в двух вариантах: первый - комбинированная железнодорожно-автомобильная с применением существующей транспортной системы; второй - рассмотрено строительство комплекса ЦПТ с годовой производительностью 18000 тыс. т в год (6000 тыс. т по руде и 12000 тыс.т по скальной вскрыше), по выдаче горной массы из карьера на высоту 165 м. Горная масса автотранспортом подается на перегрузочный пункт конвейерного подъемника, размещенного на гор. -45 м и выдается на приемную площадку склада, расположенного на гор.+105 м, где отгружается в ж/д транспорт, с доставкой руды на ДОФ комбината, а вскрыши на отвал №2.

Трассу для конвейерного подъемника, который будет строиться под углом 16°, предусматривается расположить на юго-западном борту карьера, чтобы не нарушить железнодорожную транспортную систему карьера. Строительство влечет за собой подвигание и выставление до

Таблица 1

гор. -45 м юго-западного борта карьера в отработанный вид.

Объем горно-капитальных работ по удалению вскрышных пород, необходимый для постановки участка борта в отработанный вид составит порядка 8 млн м³, а объем вскрышных работ, которые извлекаются в процессе строительства трассы конвейерного подъемника открытого исполнения, составит 150 тыс. м³.

Параллельно изложенному, рассмотрено строительство комплекса ЦПТ с такой же производительностью и высотой подъема, но с применением крутонаклонного конвейера (табл. 2).

Таблица 2 Сравнительные достоинства перехода на наклонные и крутонаклонные конвейеры

Ham tayanayya wayaaaway	Конвейерные комплексы ЦПТ		
Наименование показателей	наклонный	крутонаклонный	
Угол установки конвейера на борту карьера, град	16-18	45-50	
Длина конвейера, м	800	360	
Производительность комплекса, млн т/год	18	18	
	из них по руде 6	из них по руде 6	
Среднепотребляемая мощность, кВт	3100	2800	
Капитальный вложения на строительство комплекса ЦПТ (предположительно), тыс.грн	84468,5	61000,0	
Объем горных работ по подготовке борта карьера под строительство конвейера, млн м ³	8,4	2,2	

Достоинства наклонного конвейерного комплекса заключаются в использовании оборудования, которое работает на комплексах ЦПТ Кривбасса и производится на украинских заводах, а к достоинствам крутонаклонного конвейерного комплекса относится возможность пересекать существующие транспортные коммуникации.

Выводы и направление дальнейших исследований. В результате изучения геологического строения и условий залегания рудных тел Петровского месторождения, разрабатываемого карьером №3, разработаны рекомендации по повышению устойчивости откосов уступов и приведенных углов погашения откосов бортов карьера №3 при разработке до глубин более 300 м:

постановка сдвоенных (H_y =24 и 30 м) и строенных (H_y =45 м) уступов в предельное положение с углами погашенных откосов 50,55,60,65,70 и 75° производится с обязательным применением предварительного щелеобразования ОШ;

минимальная ширина приконтурной зоны (R), при которой создание ОЩ является обязательным, составляет 30 м. В результате по южному борту углы в пределах 33-34°, так как на борту расположены основные коммуникации железнодорожного транспорта;

характер «решетки» трещиноватости массива западного крыла аналогичен восточному борту, в связи с чем расчетные значения прочности приняты аналогично расчетным значения, полученным для восточного. Угол наклона борта рекомендуется в пределах $38-40^\circ$. Кроме того, на борту сконцентрированы автодороги для вывозки руды на перегрузочные станции и далее на обогатительную фабрику, а также вскрышных пород на расширяемую часть отвала №1 и №2. Углы откосов уступов на горизонтах карьера, исходя из физико-механических свойств разрабатываемых пород, в конечном положении рекомендуется принять: для рыхлых пород 35° , для скальных пород $60-70^\circ$. В рабочем положении углы откосов уступов не должны превышать: для рыхлых пород 45° и скальных пород 80° .

рекомендуемый угол откоса северного борта в пределах 44-45°, так как борт должен интенсивно разрабатываться в горизонтальном направлении на 60-65 м в год в течение 10-12 лет. При этом использование предложенных технологических схем по заоткоске уступов в пределах рекомендуемых контуров обеспечивает устойчивость откосов и бортов уступов, безопасность ведения горных работ и позволяет сохранить объемы вскрышных работ;

приведенные углы погашения откосов восточного борта находятся в пределах 38-40°, ввиду того, что на борту расположена железнодорожная стация «Петрово» для заезда в карьер на горизонты +95, +85, +75 и вывозки вскрышных пород на отвал №2. В дальнейшем восточный борт должен быть постоянным На территории станции «Петрово» необходимо решить вопросы организации сброса ливневых талых вод, которые в настоящее время создают оползневые явления в северо-восточной части борта карьера;

в результате приведенные углы погашения откосов бортов карьера составляют: северного борта - 44° , восточного борта - $38-40^{\circ}$, южного борта - $33-34^{\circ}$, западного борта - $38-40^{\circ}$, при высоте уступа 15 м и позволяют их увеличить до 44° при высоте уступа 30 м, что уменьшит объ-

ем вскрышных пород на 5-6% или на 40,6 млн м³.

Годовой экономический эффект от внедрения результатов приведенных исследований составит 16,8 млн грн.

Список литературы

- 1. **Яковлев В.Л.** Перспективные решения в области циклично-поточной технологии глубоких карьеров / В.Л.Яковлев // Горный журнал.-2003.-№4.-С.10-13.
 - 2. Mining magazine. Caterpillar launches the 5080 shovel.-January 1995.-pp.47-49.
- 3. **Ефремов Э.И**. Дальнейшее совершенствование буровзрывных работ при высоких уступах на карьере КЦГОКа / **Э.И.Ефремов, А.В.Бурлака** // Взрывное дело.-1965.-№57/14.-Недра.-С.162-167.
- 4. **Малюта Д.И.** Опыт взрывания крепких руд глубокими скважинами на карьере НКГОКа / Д.И. Малюта, М.А.Волынец // Взрывное дело.-1965.-№57/14.-Недра.-С.145-151.
- 5. **Новожилов М.Г.** Оптимизация параметров высоких уступов при разработке глубоких горизонтов карьеров / **М.Г.Новожилов, А.Ю.Куценко** // Горный журнал.-1983.-№3.-С.14-19.
- 6. **Хохлов В.Н.** Положительный опыт применения экскаваторов с увеличенными рабочими параметрами на Коршуновском карьере / **В.Н.Хохлов, М.Г.Новожилов** // Горный журнал.-1968.-№3.-С.18-19.
- 7. **Ефремов Э.И.** Управление взрывным дроблением и перемещением горных пород в условиях глубоких карьеров Кривбасса / **Э.И.Ефремов, В.Д.Петренко** // Горный журнал.-1988.-№11.-С.36-39.
- 8. **Михайлов А.М.** Опасность и экономичность высоких уступов на карьерах / **А.М.Михайлов, А.Г. Темченко** // Разработка рудных месторождений.-1999.-№68.-С.19-24.
- 9. **Шешко Е.Е.** Перспективы крутонаклонного конвейерного подъема на горных предприятиях / **Е.Е. Шешко, В.И.Морозов, А.Н.Картавый** // Горный журнал. .-1996.-№6.-С.12-14.
 - 10. Черненко В.Д. Теория и расчет крутонаклонных конвейеров / В.Д. Черненко // Л. Изд-во ЛГУ.-1985.
- 11. **Полторащенко С.П.** Особенности ведения горных работ на сдвоенных уступах / **С.П. Полторащенко** // КТУ.-2005-№10.-C.15-18.
- 12. Пат. 28508 Украина F42D1/00 Спосіб руйнування гірничого масиву / **Антонов А.Ю., Мец Ю.С.** // №97052485; заявл. 28.05.97; опубл. 29.12.99. Бюл. №8.
- 13. Антонов А.Ю. Технология взрывной заоткоски уступов / А.Ю.Антонов, Ю.С. Мец // Разработка рудных месторождений.-2001.-№76.-С.15-21.
- 14. **Щукин Ю.Г.** Специальные заряды в технологи заоткоски уступов в карьере ОАО "Карельский окатыш" / **Ю.Г. Щукин, И.А. Коломинов, С.Н. Чернышов** // Горный журнал.-2013.-№10.-С.86-87.
- 15. Пат. 25183 Украина F42D1/00 Спосіб дроблення гірничих порід вибухом / **Антонов А.Ю., Мец Ю.С.** // №96041422; заявл. 10.04.96; опубл. 30.10.98.
- 16. Пат. 28333 Украина F42D1/00 Спосіб вибухового дроблення гірничих порід / **Антонов А.Ю., Мец Ю.С.** // №96072834; заявл. 15.07.96; опубл. 29.12.99. Бюл. №8.
- 17. **Перегудов В.В.** Нарушенность массивов горных пород из-за многократного воздействия взрывов в карьере / **В.В.Перегудов** // Новое в технологии, технике и экономике переработки минерального сырья.-1999.-C.125-130.
- 18. Зотеев В.Т. Устойчивость бортов и уступов глубоких карьеров / В.Т. Зотеев, В.В. Ялунин, В.Н. Морозов // Горный журнал.-1988.-№5,-С.35-39.

Рукопись поступила в редакцию 17.02.14

УДК 622.271

С.М. ЧУХАРЕВ, канд. техн. наук, доц., Криворожский национальный университет

ВЫПУСК ПОЛЕЗНОГО ИСКОПАЕМОГО ПОД «ПЛАВАЮЩЕЙ» ПОТОЛОЧИНОЙ С РЕГУЛИРОВОЧНЫМ ЦЕЛИКОМ

Проанализированы технологии выпуска руды под «плавающей» потолочиной. Предложены варианты систем разработки с выемкой руды вертикальными столбами и выпуском под защитным перекрытием с регулировочным целиком.

Проблема и ее связь с научными и практическими задачами. Эффективность работы горных предприятий оценивается прежде всего обеспечением рационального использования недр при отработке месторождений, полным и качественным извлечением запасов полезного ископаемого.

Снижение потерь и разубоживания за счет применения различных технических средств - высокопроизводительных машин и механизмов, позволяющих в условиях подземных горных работ интенсифицировать выпуск и транспортировку руды лишь частично решают эту проблему, поскольку применение мощного оборудования ограничено параметрами горных выработок.

Следовательно, необходим поиск новых технологических решений, позволяющих решить проблему уменьшения потерь и разубоживания руды при подземной разработке полезных ископаемых.