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ВСТУП 

 
Сучасні системи керування мають складну багаторівневу (ієрархічну) структуру, в якій 

використовуються обчислювальні мережі різного рівня на основі ЕОМ та мікропроцесорних 
засобів. Для складних технологічних об’єктів розробляються системи керування, які також мають 
достатньо складну структуру і розвинені зв’язки між окремими частинами (елементами). Теорія 
автоматичного керування виявляє загальні закономірності функціонування, які притаманні 
автоматичним системам різної природи, і на основі цього розробляє принципи побудови 
ефективних систем для керування об’єктами різного призначення. При вивченні процесів 
керування в теорії автоматичного керування абстрагуються від фізичних та конструктивних 
особливостей систем і замість реальних систем розглядаються їх адекватні математичні моделі. За 
допомогою цих моделей розв’язуються основні задачі – аналізу та синтезу автоматичних систем. 
Тому підготовка спеціалістів з високим рівнем теоретичних знань і практичних навичок спонукає 
до необхідності вивчення сучасними студентами дисципліни «Теорія автоматичного керування». 
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1 ОСНОВНІ ПОНЯТТЯ ТА ВИЗНАЧЕННЯ ТЕОРІЇ 

АВТОМАТИЧНОГО КЕРУВАННЯ 
 

 
1.1 Історія розвитку автоматичного керування 
 
 
Завдання автоматизації полягає у здійсненні автоматичного керування різними технічними 

процесами. Незалежно від видів технологічних або виробничих процесів необхідно раціональне і 
правильне керування ними, основу якого складають закони кібернетики. 

Поняття «автоматизація» є одним із ключових у теорії автоматичного керування і походить від 
грецького слова «автоматос», що означає «саморушійний». Перші відомості про автомати 
зустрічалися в роботах Герона Олександрійського, де описані пневмо-автомати для відчинення 
дверей храму, водяний орган, прилад для вимірювання протяжності доріг, механічний театр 
маріонеток, але всі ці пристрої не знайшли промислового застосування в ту епоху. У середні віки 
розвивається «андроїдна автоматика» - поява автоматів, що наслідують 

окремим процесам людини. У XVIII столітті "Театр автоматів" був створений російським 
механіком І.П. Кулібіним. У XVIII-XIX ст. починається новий етап розвитку автоматики, 
обумовлений промисловим переворотом в Європі, що сприяє появі таких автоматичних пристроїв 
як регулятор рівня котла парової машини І.І. Повзунова, регулятор рівня котла парової машини 
Уатта, система програмного керування від перфострічки ткацьким верстатом Жаккарда. 

Новий етап автоматики зіграв величезну роль у техніці, ознаменувався розвитком саме 
теоретичних основ теорії регулювання, 

виділенням в окремий науковий напрямок теорії автоматичного керування. Паралельно 
розроблялися методи аналізу та розрахунку автоматичних пристроїв у електротехніці. 

Значний поштовх розвитку теорії та практики автоматичного керування дала Друга світова 
війна, коли виникла потреба в створення автопілотів, систем гарматного наведення, станцій 
радарного стеження. Складність систем військового призначення та очікувані результати від їх 
застосування дозволили розширити коло технічних засобів та загострили інтерес до систем 
керування та розробки нових методів їх синтезу та аналізу. Формування теорії автоматичного 
керування в самостійну наукову та навчальну дисципліну відбулося в період з 1940 по 1950 роки. 
У цей час були видані перші монографії та підручники, в яких автоматичні пристрої різної фізичної 
природи розглядалися єдиними методами. У 70-х роках була розроблена теорія оптимального 
керування, пильну увагу було прикуто до робастних систем керування, при цьому паралельне 
вдосконалення елементної бази обчислювальної техніки сприяє розвитку методів чисельного 
аналізу та синтезу систем керування. В електроенергетиці знаходять практичне застосування всі 
новітні досягнення в техніки керування. 

На сучасному етапі розвитку суспільства підвищився інтерес до застосування принципів 
автоматичного регулювання до керування товарно-матеріальними запасами, 
сільськогосподарським виробництвом, вітроенергетичними та сонячними установками, 
процесами біомедицини, діагностики, протезування, соціальної, економічної, політичної сфер.  

В даний час теорія автоматичного керування поряд з новітніми розділами, так званої, загальної 
теорії керування (дослідження операцій, системотехніка, теорія ігор, теорія масового 
обслуговування) відіграє важливу роль у вдосконаленні та автоматизації керування виробництвом. 

 
 

1.2 Цілі та завдання теорії автоматичного керування 
 
 
Теорія автоматичного керування (ТАК) вивчає методи математичного моделювання, аналізу та 

синтезу систем автоматичного керування. 
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ТАК - сукупність знань, що дозволяють створювати та вводити в дію автоматичні системи 
керування технологічними процесами із заданими характеристиками. 

Об'єкт вивчення ТАК – система автоматичного керування (САК). 
Предмет вивчення ТАК – процеси, що існують  у САК. 
Мета вивчення ТАК – облік набутих знань у практичній діяльності при проектуванні, 

виробництві, монтажі, налагодженні та експлуатації САК 
Керуання – це сукупність операцій, необхідні пуску, зупинки процесу, і навіть підтримки чи 

зміни у необхідному напрямі величин, що характеризують процес [1]. 
Мета керування – досягнення значень, співвідношень значень координат процесів у об'єкті 

керування чи його змін у часі, у яких забезпечується досягнення бажаних результатів 
функціонування об'єкта. 

Об'єкт керування (ОУ) – це технічний пристрій, у якому протікає керований процес. 
Пристрій керування (ПУ) - пристрій, що здійснює відповідно до алгоритму керуючий вплив на 

об'єкт керування. 
Поведінка об'єкта керування, результат його функціонування визначається деякими 

показниками, яким найчастіше є значення фізичних (або іншої природи) величин, шо називаться 
вихідними величинами. 

Алгоритм функціонування об'єкта керування– залежність керованої величини від керуючого та 
основного впливу, що збурює.  

У реальних умовах на кожен об'єкт керування численний вплив надає навколишнє (зовнішнє) 
середовище. З усієї безлічі впливів у полі зору залишають лише ті, які надають найбільший вплив 
на вихідні величини, і називають їх вхідними впливами. 

Вхідні впливи, з погляду їхнього впливу на ОУ, поділяються на дві принципово відмінні групи. 
Деякі з них забезпечують бажану зміну поведінки об'єкта, досягнення поставлених цілей. Такі 
вхідні впливи називаються керуючими, за їх відсутності завдання керування взагалі не 
відбувається. 

Зокрема, вплив, що надходить на вхід об'єкта керування і містить інформацію про необхідне 
значення вихідної величини, називається задаючим впливом. 

Інші вхідні дії заважають досягненню мети керування називаються обурюючи або перешкодами. 
Схематично особливості об'єкта керування показані малюнку 1.2. 

 
 

Об’єкт 
керування 

збурення 

Вихідні 
величини 

Керуючі 
дії  
Рисунок 1.2 – Характеристики об'єкта керування 
 
Алгоритм керування (алгоритм функціонування керуючого пристрою) - залежність керуючого 

впливу від впливу, що управляє, керованої величини і додаткового збурюючого впливу. 
САК - це сукупність об'єкта керування та керуючого пристрою. 
Алгоритм керування - сукупність розпоряджень, що визначає характер впливів ззовні на об'єкт 

керування, що забезпечують його алгоритм функціонування. 
Регулювання – окремий випадок керування, у якому необхідний перебіг процесу створюється 

шляхом стабілізації однієї чи кількох параметрів у межах заданих значень [2].  
Автоматичне регулювання – це автоматична підтримка заданого закону зміни показників 

процесів за рахунок зворотного зв'язку. 
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Регульований об'єкт – об'єкт, керований автоматичним регулятором. 
Автоматичний регулятор – автоматичний пристрій, призначений для автоматичного 

підтримання постійного значення регульованих параметрів у різноманітних об'єктах або 
змінюваних регульованих параметрів за будь-яким потрібним законом. 

Система автоматичного регулювання (САР) – сукупність регульованого об'єкта та 
автоматичного регулятора. 

Завдання керування полягає у формуванні такого закону зміни керуючих впливів, у яких 
досягається бажане поведінка об'єкта незалежно від наявності збурень. 

Перед ТАК ставляться завдання розробки методів синтезу, аналізу та корекції, 
експериментального дослідження та налагодження САК. За допомогою методів синтезу можна 
здійснювати вибір схеми взаємодії елементів САК, параметрів та характеристик цих елементів 
таким чином, щоб система загалом задовольняла заданим вимогам до її поведінки в статиці та 
динаміці. Методи аналізу дозволяють визначити якісні показники САК, а у разі їхньої відмінності 
від заданих – намітити шляхи покращення статичних та динамічних властивостей системи. Зміна 
статичних та динамічних властивостей здійснюється за допомогою корекції. Методи 
експериментального дослідження та налагодження САК дають можливість раціонально та 
оптимально дослідити умови роботи [3]. 

В даний час розробка та проектування САК є досить складним завданням, рішення якої може 
бути досягнуто різними шляхами. Щоб спроектувати САК, що задовольняє всім вимогам 
технічного завдання, зазвичай доводиться прораховувати і порівнювати між собою кілька варіантів 
поелементної та принципової схем. Багатозначність рішення робить проектування САК творчим 
цікавим завданням, складність розв'язання якої значною мірою залежить від виду диференціальних 
рівнянь, що описують статичні та динамічні характеристики САК. Сучасний рівень розвитку 
математики часто виявляється недостатнім для вирішення окремих завдань теорії математичного 
регулювання і тоді на допомогу проектувальникам приходять експериментальне дослідження та 
моделювання, які полегшують розрахунки та сприяють створенню наближених методів вирішення 
задач.  

 
1.3 Класифікація систем автоматичного керування 

 
Класифікація САК може бути здійснена за різними принципами та ознаками, що 

характеризують призначення та конструкцію систем, вид застосовуваної енергії, використовувані 
алгоритми керування та функціонування тощо. Можна виділити ряд ознак, що визначають класи 
САК, як представлено в таблиці 1.1, проте варто зазначити, що цей варіант класифікації не є 
вичерпним. 

Розглянемо докладніше системи, у яких застосований різний принцип керування. У розімкнених 
системах відсутній зворотний зв'язок між виходом об'єкта керування та входом керуючого 
пристрою. 

Зворотний зв'язок – це процес, що призводить до того, що результат функціонування будь-якої 
системи впливає параметри, яких залежить функціонування цієї системи. Інакше кажучи, на вхід 
системи подається сигнал, пропорційний її вихідному сигналу (чи, у випадку, є функцією цього 
сигналу). Часто це робиться навмисно, щоб вплинути динаміку функціонування системи. 

Розрізняють позитивний та негативний зворотний зв'язок. 
Негативний зворотний зв'язок змінює вхідний сигнал таким чином, щоб протидіяти зміні 

вихідного сигналу. Це робить систему стійкішою до випадкової зміни параметрів. 
 

Таблиця 1- Класифікація САК 
Ознака класифікації  Клас САК 

принцип керування  
 

розімкнені  
замкнуті 
комбіновані 

цціль керування  системи програмного керування 
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 стежать системи 
адаптивні (самоналаштовуються 

кількість регульованих величин  
 

одновимірні  
агатовимірні 

характер сигналів у пристрої 
керування 

езперервні (аналогові) 
 гармонічним модульованим сигналом 
искретні 
Релейні, імпульсні, цифрові) 

характер параметрів 
таціонарні 
естаціонарні 
 розподіленими параметрами 

ідеалізація математичного опису лінійні 
нелінійні 

вид математичних рівнянь  стаціонарні 
нестаціонарні 

характер процесів стохастичні 
детерміновані 

належність джерела енергії, що 
створює керуючий 

вплив прямої дії 
непрямої дії 

характер залежності керованої 
величини від статичного обурення 

статичні  
астатичні 

число контурів одноконтурні 
багатоконтурні 

спосіб вироблення керуючих 
впливів 

безпошукові 
пошукові 

критерій якості 
із заданою якістю 
оптимальні 
адаптивні 

 
 

Позитивний зворотний зв'язок, навпаки, посилює зміну вихідного сигналу. Системи з сильною 
позитивною зворотним зв'язком виявляють тенденцію до нестійкості, вони можуть виникати 
незагасаючі коливання, тобто. система стає генератором. 

Розімкнена САК – система, у якій здійснюється контроль керованої величини, тобто. вхідними 
впливами її керуючого пристрою є лише зовнішні (що задає та обурює) впливу. 

Алгоритм керування розімкнутої системи першого типу має вигляд y(t) = Ay[xз(t)].  
Найчастіше оператор Аy встановлює пропорційний зв'язок між впливом xз(t) і керуючим впливом 
y(t). 

Розімкнуті САК можна розділити на два типи: 
– здійснюють керування відповідно до зміни лише впливу, що задає (малюнок 1.4); 
- здійснюють керування відповідно до зміни та впливу, що задає і обурює (малюнок 1.5). 
 

 
 
Малюнок 1.4 – Схема САК  з розімкнутим ланцюгом впливу, що задає 
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Системи першого типу працюють з достатньою ефективністю лише за умови, якщо вплив 
збурень на керовану величину невеликий і всі елементи розімкнутого ланцюга мають досить 
стабільні характеристики. 

 

 
Малюнок 1.5 – Схема САК з розімкнутим ланцюгом впливу, що задає і обурює. 
 
Найчастіше розімкнуті системи керування із збуренням виконують функції стабілізації 

керованої величини. 
Перевага розімкнених систем керування з обурення – їхня швидкодія: вони компенсують вплив 

обурення ще до того, як воно виявиться на виході об'єкта. Але ці системи застосовні лише в тому 
випадку, якщо на керовану величину діють одне або два обурення і є можливість вимірювання цих 
збурень. Тому якщо ці величини діють на об'єкт як обурення, то зазвичай прагнуть стабілізувати їх 
за допомогою додаткової системи або ввести в основну систему керування даним об'єктом сигнал, 
пропорційний такої дії. 

Замкнена САК (САК із зворотним зв'язком) – система, в якій вхідними впливами її керуючого 
пристрою є як зовнішнє (що задає), так і внутрішній (контрольний) вплив. 

Керуючий вплив у замкнутій системі (рис. 1.6) 
формується здебільшого залежно від величини та знаку відхилення істинного значення 

керованої величини від її заданого значення y(t) = Ay[ε(t)], где ε(t) = xз(t) - x (t)  – сигнал помилки 
(сигнал розузгодження). 

 

 
 
Малюнок 1.6 – Схема САК із замкнутим ланцюгом впливу 
 
Замкнену систему називають часто системою керування з відхилення. Варіант зміни САК зі 

зворотним зв'язком можно представить схемою малюнка 1.7. 
 
           Дійсне  
вихідна                   значення 
зміна                      -             вихідна  
                  зміна 
 
 
 
 
 
 
Рисунок 1.7 – Система із зворотним зв'язком 

вимірювальний пристрій 

регулятор Об’єкт керування 
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У замкнутій системі контролюється безпосередньо керована величина і тим самим при 

виробленні керуючого впливу враховується дія всіх збурень, що впливають на керовану величину. 
У цьому полягає перевага замкнутих систем. Але через наявність замкненого ланцюга впливів у 
цих системах можуть виникати коливання, які в деяких випадках роблять систему непрацездатною. 
Крім того, сам принцип дії замкнутих систем (принцип керування з відхилення) допускає небажані 
зміни керованої величини: спочатку обурення має проявитися на виході, система "відчує" 
відхилення і лише потім виробить керуюче вплив, спрямоване на усунення цього відхилення. Така 
"повільність" знижує ефективність керування. Незважаючи на наявність певних недоліків, цей 
принцип керування широко застосовується під час створення САК. 

Комбінована АСУ (рисунок 1.8) - система, в якій вхідними впливами її керуючого пристрою є 
як зовнішні (що задає і обурює), так і внутрішнє (контрольне) впливу. 

 
Малюнок 1.8 – Схема САК з комбінованими ланцюгами впливу 
 
У комбінованих системах є два ланцюги впливів –за завданням і з обурення, і керуючий вплив 

формується згідно з оператором y(t) = Aз[ ε(t)] + Aв[ z(t)]. 
Ефективність роботи комбінованої САК завжди більша, ніж у окремих функціонуючих 

замкнутої або розімкнутої систем. 
Слід зазначити, що керування з використанням зворотного зв'язку – це незаперечний факт 

сучасного повсякденного життя. За принципом зворотного зв'язку побудовані системи керування 
автомобілями, холодильними установками, духова шафа, електропіч, водяний нагрівач і т.д. 

Безпошукова САК - система, в якій керуючий вплив виробляється в результаті порівняння 
істинного значення керованої величини із заданим значенням. 

Такі системи застосовують для керування порівняно нескладними об'єктами, характеристики 
яких досить добре вивчені і для яких заздалегідь відомо в якому напрямку і на скільки потрібно 
змінити керуючий вплив при певному відхиленні керованої величини від заданого значення. 

Пошукова САК – система, в якій керуючий вплив формується за допомогою пробних керуючих 
дій та шляхом аналізу результатів цих пробних дій. 

Таку процедуру пошуку правильного впливу, що управляє, доводиться застосовувати в тих 
випадках, коли характеристики об'єкта керування змінюються або відомі не повністю; наприклад, 
відомий вид залежності керованої величини від впливу, що управляє, але невідомі числові значення 
параметрів цієї залежності. Тому пошукові системи називають ще системами з неповною 
інформацією. 

Найчастіше принцип автоматичного пошуку управляючих впливів застосовують керувати 
об'єктами, характеристики яких мають екстремальний характер. Метою керування є відшукання та 
підтримка керуючих впливів, що відповідають екстремальному значенню керованої величини. Такі 
пошукові системи називають екстремальними (оптимальними) системами. 

Особливий клас САК утворюють системи, які здатні автоматично пристосовуватися до зміни 
зовнішніх умов та властивостей об'єкта керування, забезпечуючи при цьому необхідну якість 
керування шляхом зміни структури та параметрів керуючого пристрою. Вони називаються 
адаптивними системами. 

У складі адаптивної САК є додаткове автоматичне пристрій, який змінює алгоритм керування 
основного керуючого пристрою таким чином, щоб САК в цілому здійснювала заданий алгоритм 
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функціонування. Алгоритм функціонування адаптивної САК пропонує зазвичай максимізацію 
показника якості, який характеризує або властивості процесу керування в САК в цілому 
(швидкість, точність тощо.), або властивості процесів, що протікають в об'єкті керування 
(продуктивність, досягнення найвищого коефіцієнта корисної дії, мінімізація витрат тощо). Тому 
адаптивні САК є зазвичай ще й оптимальними. 

Наступним важливим критерієм класифікації систем виступає залежність керованої величини в 
режимі, що встановився від величини збурюючого впливу, за яким САК діляться на статичні та 
астатичні. 

Регулювання називається статичним, якщо встановилося після закінчення перехідного процесу 
значення регульованої величини при різних постійних значеннях навантаження прийматиме також 
різні постійні значення, що залежать від навантаження. 

Регулятор, який здійснює статичне регулювання, називається статичним регулятором. 
У найпростішому випадку, коли переміщення регулюючого органу, що встановилося, під 

впливом регулятора пропорційного відхилення регульованої величини від її заданого значення, 
статичний регулятор називається пропорційним регулятором. 

Для характеристики ступеня залежності відхилення регульованої величини від навантаження 
використовується поняття статизму регулювання. 

Статичний регулятор підтримує не строго постійне значення регульованої величини, а з 
помилкою, яка називається статичною помилкою системи. 

Статизм регулювання – це відносна статична помилка за зміни навантаження від холостого ходу 
до номінальної [1]. 

Якщо при зміні навантаження від нуля до номінального значення в статичній системі значення 
параметра, що регулюється, змінилося від xmin до хном, то статизмом системи δ називають 
наступне співвідношення  

 

. ном

minном
x

хx −
=δ

 
У випадках, коли статична помилка є небажаною, переходять до 
регулюванню астатичному. 

Астатичне регулювання - регулювання, при якому в режимі, що встановився, підтримується 
постійне значення регульованої величини, рівне заданому значенню, незалежно від величини 
навантаження. Характеристика астатичного регулювання є пряму лінію, паралельну осі 
навантаження. Помилка, що встановилася при астатичному регулюванні теоретично дорівнює 
нулю, а практично внаслідок неточності регулятора вона можлива, проте від навантаження 
залежати не буде. В результаті помилки регульована величина може прийняти будь-яке значення 
всередині деякої зони допустимих значень. 

Для отримання астатичного регулювання потрібно встановити в регуляторі жорстку залежність 
між положенням регулюючого органу і значенням регульованої величини для того, щоб задане 
значення регульованої величини можна було підтримувати при будь-якому навантаженні. З цією 
метою і вводять астатичну ланку. 

Слід зазначити, що статичні регулятори мають статичну помилку, астатичні регулятори 
статичної помилки не мають, але вони більш інерційні, складні конструктивно і дорожчі. 

Забезпечення необхідної статичної точності регулювання 
є першим основним завданням при розрахунку елементів САК. 
САК притаманні статична та динамічна помилки. 
Статична помилка – значення різниці, що встановилося, між заданим і кінцевим значеннями 

керованого параметра при постійному значенні задає або обурює впливу. 
Динамічна помилка - значення різниці між заданим і поточним значеннями керованого сигналу. 
Розмір помилок керування переважно залежить від струк-туры управляючого устрою, 

визначального закон керування. 
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Параметри САК обумовлені властивостями її окремих елементів. Параметри системи можуть 
бути постійними та змінними. У тому випадку, коли параметри постійні та змінюються за лінійним 
законом, САК називається лінійною системою, інакше – нелінійною. 

 
1.4 Алгоритми керування 

 
Керуючий пристрій складається з різних елементів, але при розробці та дослідженні алгоритмів 

керування зазвичай виконавчий пристрій та інші елементи, що володіють інерційністю, об'єднують 
з об'єктом керування (рисунок 1.7) і тоді під регулятором (керуючим пристроєм) розуміють 
перетворююче об'єкт керування, що формує на підставі помилки ɛ [Кім]. 

Функціональна залежність у0 = f(ɛ), що визначає зв'язок між бажаним впливом регулятора на 
регулюючий орган (у0) та величиною відхилення ɛ називається алгоритмом регулятора (законом 
регулювання). 

В даний час застосовують три основні принципи регулювання: 
а) принцип регулювання щодо відхилення; 
б) принцип регулювання навантаження (з обурення); 
в) комбінований принцип. 
У промислових регуляторах застосовують такі типові закони керування: 
а) пропорційний закон (П-регулятор), який визначається залежністю у0 = kПɛ ; 
б) пропорційно-інтегральний закон (ПІ-регулятор), визначений залежністю; 

𝑦𝑦0 = 𝑘𝑘П𝜀𝜀 + 𝑘𝑘і � 𝜀𝜀(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑡𝑡

0
 

в) пропорційно-диференціальний закон (ПД-регулятор), що визначається залежністю; 

𝑦𝑦0 = 𝑘𝑘П𝜀𝜀 + 𝑘𝑘Д
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 
г) пропорційно-інтегро-диференціальний (ПІД-регулятор), що визначається залежністю  

𝑦𝑦0 = 𝑘𝑘П𝜀𝜀 + 𝑘𝑘і ∫ 𝜀𝜀(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡
0 + 𝑘𝑘Д

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. 
У висловлюваннях законів kП, kІ, kД – передавальні коефіцієнти, вибір яких і рівень впливу на 

керований процес реалізуються у процесі синтезу алгоритмів керування. 
Завдання синтезу і проектування САК полягає в такому виборі її структурної схеми, параметрів, 

характеристик і способу їх технічної реалізації, при яких необхідні динамічні та експлуатаційні 
властивості системи забезпечуються простими і надійними технічними засобами. 

З погляду ТАК метою синтезу є формування закону керування, при якому досягаються задані 
показники стійкості та якості системи. 

 
 
Контрольні питання 
1. Яка роль автоматизації у покращенні якості продукції, підвищенні ефективності виробництва 

та прискоренні технічного 
прогресу? 
2. Що називається керуванням? 
3. Що називається автоматичним керуванням? 
4. Що називається системою автоматичного керування? 
5. Що є основним завданням автоматичного керування? 
6. Що є метою автоматичного керування? 
7. Що називається об'єктом керування? 
8. Що називається керованою величиною? 
9. Що називається керуючим органом? 
10. Що називається чутливим елементом? 
11. Що таке вхідна та вихідна величини? 
12. Що називається керуючим впливом? 
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13. Що називається обуренням? 
14. Що називається відхиленням від заданої величини? 
15. Що називається керуючим пристроєм? 
16. Що називається пристроєм, що задає? 
17. Як називається система, що складається з об'єкта, що управляє, і об'єкта керування? 
18. Дати визначення регулятора? 
19. Як називається координата, значення якої залежить від керуючих впливів і показують ступінь 

досягнення мети керування? 
20. Охарактеризувати зворотний зв'язок, що діє в перехідному режимі зміни стану об'єкта 

керування у бік зменшення відхилень поточних значень координат об'єкта від їх попередніх 
значень. 

21. Як називається вплив, що додається до входу системи керування? 
22. Як називається вплив, що впливає об'єкт керування у час? 
23. Як називається сукупність показників керування, прийнята з метою оцінки його корисності? 
24. Вкажіть керування, що є поєднанням управлінь за відхиленнями і з обуреннями? 
25. Як називається керування, у якому управляючий вплив представляється як дискретних 

безперервних впливів? 
26. Як називається система керування, у якої в режимі немає помилки у відпрацюванні 

управляючого впливу? 
27. Як називається зворотний зв'язок, що діє лише у перехідному режимі зміни стану об'єкта 

керування у бік зменшення відхилень поточних значень координат об'єкта від попередніх значень? 
28. Як називається вплив із виходу системи керування? 
29. Як називається система керування, в якій здійснено керування без зворотного зв'язку? 
30. Як називається об'єкт керування, у математичній моделі функціонування якої кожна керована 

координата залежить лише від однієї відповідної їй керуючої координати? 
31. У чому суть принципу розімкнутого керування? 
32. У чому суть принципу компенсації? 
33. У чому суть принципу зворотний зв'язок? 
34. Перерахуйте переваги та недоліки принципів керування? 
35. Який окремий випадок керування називається регулюванням? 
36. У чому відмінність систем прямого та непрямого регулювання? 
37. Які основні види САК? Дати їх коротку характеристику. 
38. Що називається статичним режимом САК? 
39. Що називається статичними характеристиками САК? 
40. Що називається рівнянням статики САК? 
41. Що називається коефіцієнтом передачі, у чому відмінність від 
коефіцієнта посилення? 
42. У чому відмінність астатичності 
 
 

2 ОСНОВНІ ХАРАКТЕРИСТИКИ ТА ЗАГАЛЬНІ АНАЛІТИЧНІ ЗАЛЕЖНОСТІ У 
СИСТЕМАХ АВТОМАТИЧНОГО КЕРУВАННЯ 

 
2.1 Структура систем автоматичного керування 

 
Вивчення та математичний аналіз САК істотно полегшуються, якщо її попередньо подумки 

розчленувати на типові елементи,виявити фізичні взаємозв'язки між ними і відобразити ці 
взаємозв'язки схематично у будь-якій умовній формі. 

САК може бути розділена на частини за різними ознаками: 
призначення частин, алгоритмів перетворення інформації, конструктивної відокремленості. 

Розрізняють такі структури та схеми САК: 
а) функціональну; 
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б) технічну; 
в) алгоритмічну; 
г) конструктивну. 
Структура – сукупність пов'язаних між собою частин чогось цілого. 
Структурна схема – графічне зображення структури. 
Теоретично автоматичного керування найчастіше мають справу з функціональною та 

алгоритмічною структурами (схемами). 
Функціональні та алгоритмічні схеми складаються з умовних зображень елементів та ланок 

(зазвичай у вигляді прямокутників) та різних зв'язків, що зображуються у вигляді ліній зі 
стрілками, що показують напрям передачі впливів. Кожна лінія відповідає зазвичай одному 
сигналу або одному впливу. Біля кожної лінії вказують фізичну величину, що характеризує цей 
вплив. 

Технічна структура – структура системи, елементами якої є технічні елементи. 
Зазвичай спочатку становлять функціональну схему САК та алгоритмічну. Структурні схеми 

можуть складатися з більшим або меншим ступенем деталізації. Схеми, у яких показано лише 
головні чи укрупнені частини САК, називаються узагальненими. 

Функціональна структура (схема) - структура (схема), що відображає функції (цільові 
призначення) окремих частин САК, що розглядається як сукупність функціональних елементів. 

Такими функціями можуть бути такі: 
а) одержання інформації про стан об'єкта керування; 
б) перетворення сигналів; 
в) порівняння сигналів. 
Як частини функціональної структури (схеми) САК розглядаються функціональні пристрої. 

Назви пристроїв вказують на виконання певної функції. Як функціональні пристрої можуть 
виступати наступні елементи: 

а) датчик; 
б) підсилювач; 
в) блок порівняння; 
г) керуючий блок; 
д) виконавчий устрій тощо. 
На малюнку 2.1 наведено приклад функціональної схеми САК,  

 
 

Малюнок  2.1 – Узагальнена функцiональна схема САК 

Де БЗ -задаючий блок; БП - 
блок виміру БВ; блок порівняння БП; блок керування БК; підсилювальний елемент ПЕ; 

перетворюючий елемент ПРЕ; вимірювальний елемент ВЕ. виконавчий пристрій ВП;  
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Алгоритмічна структура (схема) - структура (схема), що представляє собою сукупність 
взаємопов'язаних алгоритмічних ланок і характеризує алгоритми перетворення інформації в САК. 

Алгоритмічна ланка – частина алгоритмічної структури САК, що відповідає певному 
математичному чи логічному алгоритму перетворення сигналу. 

Якщо алгоритмічна ланка виконує одну найпростішу математичну або логічну операцію, то її 
називають елементарною алгоритмічною ланкою. На схемах алгоритмічні ланки зображують 
прямокутниками, всередині яких записують відповідні оператори перетворення сигналів.  

Іноді замість операторів у 
Формальному вигляді наводять графіки залежності вихідної величини від вхідної або графіки 

перехідних функцій. 
Розрізняють такі види алгоритмічних ланок: 
а) статичне; 
б) динамічний; 
г) арифметичне; 
д) логічне. 
Статична ланка – ланка, що перетворює вхідний сигнал вихідний миттєво (без інерції). 
Зв'язок між вхідним і вихідним сигналами статичної ланки описується зазвичай функцією 

алгебри. До статичних ланок відносяться різні безінерційні перетворювачі, наприклад, 
резистивний дільник напруги.  

На малюнку 2.2 показано умовне зображення статичної ланки на алгоритмічній схемі. 

 
Рисунок 2.2 – Умовне зображення статичної ланки 
 
Динамічне ланка – ланка, що перетворює вхідний сигнал вихідний відповідно до операцій 

інтегрування та диференціювання у часі. 
Умовне зображення динамічної ланки представлено на малюнку 2.3. 

 
 

Рисунок 2.3 – Умовне зображення динамічної ланки 
Зв'язок між вхідним і вихідним сигналами динамічного звена описується звичайними 

диференціальними рівняннями. 
До класу динамічних ланок відносяться елементи САК, що володіють здатністю накопичувати 

будь-який вид енергії або речовини наприклад, інтегратор з урахуванням електричного 
конденсатора. 

Арифметична ланка - ланка, що здійснює одну з арифметичних операцій: підсумовування, 
віднімання, множення, розподіл. 

Найчастіше зустрічається в автоматиці арифметичне ланка – ланка, що виконує підсумування 
алгебри сигналів, називають суматором, умовне позначення якого наведено на малюнку 2.4. 
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Малюнок 2.4 – Умовне зображення вузла підсумовування 
 
Логічне ланка – ланка, виконує якусь логічну операцію: логічне множення («І»), логічне 

додавання («АБО»), логічне заперечення («НІ») тощо. На малюнку 2.5 показано умовне позначення 
логічної ланки. 

Х     У 
 
 
У=Х⃛ 
 
 

Малюнок 2.5 – Умовне позначення логічної ланки 
 

Вхідний та вихідний сигнали логічної ланки є зазвичай дискретними і розглядаються як логічні 
змінні. 

Конструктивна структура (схема) - структура (схема), що відображає конкретне схемне, 
конструктивне виконання САК. 

До конструктивних схем належать: кінематичні схем пристроїв, принципові та монтажні схеми 
електричні з'єднань і т. д. Так як ТАУ має справу з математичними моделями САК, то конструктивні 
схеми цікавлять значно меншою мірою, ніж функціональні та алгоритмічні. 

 
 
2.2 Особливості та властивості елементів САК 
 
 
При взаємодії частин САУ між собою, а також при процесі функціонування самого об'єкта 

керування здійснюється перетворення енергії одного виду в енергію іншого виду, що обумовлено 
різною фізичною природою елементів, що входять до складу САК. Так одна і та сама система може 
включати в себе, наприклад, механічні, електричні та гідравлічні елементи. Але процеси 
перетворення і перерозподілу енергії в САК, на відміну від багатьох інших фізичних систем, строго 
орієнтовані, тобто енергія та впливи передаються лише у певному напрямку. 

Спрямованість передачі впливів у САК забезпечується завдяки наявності в одного або кількох 
конструктивних елементів системи так званого детектуючого властивості. Ця властивість полягає 
в тому, що аналізований елемент не надає зворотного дії на попередній елемент, а його вихідна 
величина не впливає на свою вхідну. Наприклад, електричний чотириполюсник має 
односпрямованість передачі впливів, якщо він не навантажує попередній чотириполюсник, тобто 
якщо вихідний опір попереднього елемента істотно менше вхідного опору аналізованого 
чотириполюсника. 

Зазвичай властивістю односпрямованості мають ті елементи САК, які передають інформаційні 
дії. До таких елементів відносяться в першу чергу вимірювачі та перетворювачі сигналів. 

Конструктивні частини системи, через які передаються енергетичні впливу, цією властивістю, 
як правило, не мають. 

Тільки внаслідок наявності елементів спрямованої дії в САК створюється замкнутий контур 
передачі дій, за допомогою якого здійснюється цілеспрямований процес керування. Без таких 
елементів САК були б непрацездатні чи малоефективні. 

НІ 
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2.3 Підходи до математичного опису лінійних систем автоматичного керування 
 
 
Математичний опис, необхідний для дослідження процесу регулювання, здійснюється зазвичай 

за допомогою диференціальних, інтегральних, різницевих або алгебраїчних рівнянь [1]. 
Інерційні системи та елементи систем безперервного регулювання описуються зазвичай 

диференціальними або інтегральними рівняннями, званими рівняннями динаміки. 
Оскільки основним режимом роботи САУ вважається динамічний режим, що характеризується 

перебігом у ній перехідних процесів. 
Тому другим основним завданням при розробці САУ є аналіз динамічних режимів роботи САК. 
Безінерційні елементи, а також поведінка системи регулювання у встановленому режимі при 

постійних впливах описуються алгебраїчними рівняннями, званими рівняннями статики. 
Якщо параметри системи вважатимуться зосередженими, то рівняння динаміки будуть 

звичайними диференціальними рівняннями. Системи з розподіленими параметрами описуються 
диференціальними рівняннями у приватних похідних. 

Основним методом дослідження САК у динамічних режимах є метод розв'язання 
диференціальних рівнянь. 

У загальному випадку диференціальні рівняння, що описують поведінку елемента або САУ, є 
нелінійними, проте при малих Відхилення координат системи від положення рівноваги нелінійні 
рівняння можна приблизно замінити лінійними рівняннями. 

Лінеаризація - процес заміни нелінійного рівняння лінійним. 
Дослідження лінійних рівнянь дозволяє зробити узагальнюючі висновки про систему. Для 

отримання математичного опису системи складаються спочатку диференціальні рівняння окремих 
ланок, та був виходячи з цих рівнянь – диференціальні рівняння САК загалом. У цьому рівняння 
елемента складається виходячи з того фізичного закону, який визначає процес, що відбувається в 
даному елементі, а замі проводиться його лінеаризація. 

 
2.3.1 Рівняння ідеалізованої машини-двигуна 

 
 
Об'єктами або виконавчими елементами в багатьох САК є двигуни з обертовим ротором [1]. 
Якщо з валом двигуна пов'язаний механізм з рухомими деталями, то наведений до валу двигуна 

момент інерції частин, що рухаються, може і не бути постійним (залежить від кута повороту вала 
двигуна). У багатьох випадках періодична зміна з малою амплітудою моменту інерції можуть не 
враховуватися, тобто момент інерції приймається постійним, рівним середньому за період. Цей 
варіант ідеалізації цілком виправданий, якщо прийняти, що час одного обороту машини мало в 
порівнянні з часом процесу регулювання (для парових машин з масивними поршнями і для дизелів 
результати цілком задовільні). 

Для багатьох машин-двигунів характерна наявність одного ступеня свобод, тобто однієї 
узагальненої координати, завдання якої в даний момент або як функція часу повністю визначає 
стан машини. Для машин, що розглядаються, як узагальнена координата, завдання якої у цей 
момент або як функції часу повністю визначає стан машини. Для аналізованих машин як 
узагальненої координати приймають або швидкість обертання валу, чи кутове положення валу, 
залежно від цього, яка з цих координат істотна. 

Якщо прийняти за координату швидкість, то рівняння руху машини буде рівняння: д`Аламбера: 
 

𝐽𝐽
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑀𝑀Д − МС, 
 
де J - момент інерції рухомих частин, наведений до валу машини; 
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ω – кутова швидкість обертання валу машини (узагальнена координата); 
Мд - рушійний момент на валу машини; 
Мс – момент опору (навантаження), наведений до валу машини. 
Рушійний момент Мд повинен залежати від положення регулюючого органу z. Ця умова 

визначає можливість регулювання машини. Але, крім цього, рушійний момент може залежати і від 
інших змінних, наприклад, від швидкості обертання вала. 

Момент опору Мс можна розбити на кілька складових, одні з яких мають постійну величину, а 
інші можуть залежати або від кута повороту ротора, або від часу, або від швидкості, отже, рівняння 
двигуна набуває вигляду: 

 

𝐽𝐽
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑀𝑀д(𝑧𝑧,𝜔𝜔) −𝑀𝑀𝑐𝑐.п. − Мс(𝜔𝜔) − Мс(𝑡𝑡) 
 
У загальному випадку рівняння нелінійне, оскільки функції Мд(z, ω) та Мс(ω) можуть бути 

нелінійними функціями z та ω. Ці функції можуть бути задані аналітично, графічно або у вигляді 
таблиць. Функція Mc(t), що є зміною навантаження на двигун, зазвичай заздалегідь невідома. Щоб 
розв'язання завдання було можливим, воно має бути задане згідно з реальними умовами. Якщо 
умови різноманітні необхідно вибирати важкі (раптовий накид або скидання навантаження), так як 
якщо регулятор добре виконує своє завдання при раптовому зміні навантаження, то при плавних її 
змін він буде відпрацьовувати сигнал ще краще.  

Приймається, що Mc(t) змінюється стрибком і після стрибка зберігає постійне значення: 

Мс(𝑡𝑡) �0, если 𝑡𝑡 ≤ 0,
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, если 𝑡𝑡 ≥ 0. 

 
Наступним етапом є лінеаризація розглянутого рівняння, яка може бути виконана аналітично за 

допомогою ряду Тейлора (при цьому всі нелінійні члени розкладання відкидаються) або графічно.  
Враховуючи рівняння статики машини в режимі: 

Мд0 – Мс0 = 0, 
 

приймаючи за змінні не абсолютні значення, які прирости: 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑(𝜔𝜔 −𝜔𝜔0)

𝑑𝑑𝑑𝑑
=
𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 
введемо безрозмірні позначення: 

𝛥𝛥𝛥𝛥
𝜔𝜔н

= 𝜙𝜙 

 
𝛥𝛥х
хн

= 𝜇𝜇 

де ωн – номінальна кутова швидкість валу машини;  
хн - повний хід регулюючого органу.  
Приймаємо позначення 

𝑇𝑇1 =
𝐽𝐽𝜔𝜔н

хн �
𝜕𝜕Мд
𝜕𝜕х �х=х0

𝜔𝜔=𝜔𝜔0

, 

 

𝑘𝑘1 =
𝜔𝜔н �

𝜕𝜕М𝑐𝑐
𝜕𝜕𝜕𝜕 −

𝜕𝜕Мд
𝜕𝜕𝜕𝜕 �

хн �
𝜕𝜕Мд
𝜕𝜕х �х=х0

𝜔𝜔=𝜔𝜔0

 

і наводимо вихідне рівняння до форми: 
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T1φ/ + k1φ = μ. 
Якщо прийняти Т = Т1/k1 і k=1/k1, то рівняння можна записати в стандартній операторній формі 

(р - оператор Лапласа): 
(Tр+1) φ = kμ. 

Таким чином, отримано рівняння руху одного з елементів системи регулювання. Допущені 
спрощення дозволяють написати рівняння машини у досить простій формі.  

 
 

2.3.2 Рівняння електричного двигуна постійного струму 
 

 
Значна кількість елементів системи регулювання описується дуже складними залежностями і 

тому такі пристрої неможливо уявити у вигляді однієї елементарної ланки. 
Прикладом такого елемента є двигун постійного струму із незалежним збудженням. Для цього 

об'єкта рівняння руху системи може бути записано таким чином: 

𝐽𝐽
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑀𝑀Д − МС 
Двигун МД електричного двигуна може бути визначений 

МД = kФIЯ, 
 
де k – постійна машини (визначається за характеристиками чи за паспортом машини);  
IЯ - струм якоря двигуна;  
Ф – магнітний потік обмотки збудження.  
Тоді вихідний вираз можна записати так 

𝐽𝐽
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑘𝑘𝐼𝐼Я − МС 
 
де МС - момент сил опору (приймається величиною постійної).  
 
Як видно, до рівнянь входять три незалежні змінні (ω, IЯ, Ф), отже, двигун володіє трьома 

ступенями свободи і в цьому необхідно знання додаткових залежностей, що зв'язують ці величини 
між собою. 

Рівняння ланцюга збудження: 

𝐿𝐿в
𝑑𝑑𝑖𝑖в
𝑑𝑑𝑑𝑑

+ 𝑅𝑅в𝑖𝑖в = 𝑢𝑢в 
де Lв - індуктивність ланцюга збудження; 
iв – струм збудження; 
Rв - опір ланцюга збудження; 
uв – напруга ланцюга збудження. 
Рівняння ланцюга якоря 

𝐿𝐿я
𝑑𝑑𝑖𝑖я
𝑑𝑑𝑑𝑑

+ 𝑅𝑅я𝑖𝑖я + 𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑢𝑢я 
 
де Lя - індуктивність ланцюга ланцюга якоря; 
iя – струм ланцюга якоря; 
Rя - опір якоря; 
kФω - ЕРС обертання; 
uя - напруга ланцюга якоря. 
Зміна магнітного потоку Ф можна прийняти пропорційним зміни струму збудження, ряд величин 

(МС, Lв, Lя, Rв, Rя) також з урахуванням загальноприйнятих припущень приймаються 
постійними, тоді вихідне рівняння може бути записано наступним чином: 
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𝐽𝐽Д
𝑅𝑅Я

(𝑘𝑘𝑘𝑘)2
𝐿𝐿Я

𝑅𝑅Я

𝑑𝑑2𝜔𝜔
𝑑𝑑𝑡𝑡2

+ 𝐽𝐽Д
𝑅𝑅Я

(𝑘𝑘𝑘𝑘)2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝜔𝜔 =
1
𝑘𝑘𝑘𝑘

𝑈𝑈Я −
𝑅𝑅Я

(𝑘𝑘𝑘𝑘)2
𝑀𝑀𝐶𝐶 

Приймаємо, що електромеханічна постійна часу 

𝑇𝑇𝑀𝑀1 =
𝐽𝐽Д𝑅𝑅Я

(𝑘𝑘𝑘𝑘)2
 

електромагнітна постійна часу якоря ланцюга 

𝑇𝑇Я =
𝐿𝐿Я

𝑅𝑅Я
 

коефіцієнт передачі двигуна постійного струму за напругою 

𝐾𝐾Д =
1
𝑘𝑘𝑘𝑘

 
передавальний коефіцієнт двигуна постійного струму за статичним моментом (за впливом, що 

збурює) 

𝐾𝐾𝑀𝑀 =
𝑅𝑅Я

(𝑘𝑘𝑘𝑘)2
 

 
Після підстановки прийнятих позначень остаточно отримаємо диференціальне рівняння двигуна 

постійного струму, записане щодо регульованої величини ω, при вхідній напрузі uя і збурюючому 
МС дії: 

 𝑇𝑇𝑀𝑀1𝑇𝑇Я
𝑑𝑑2𝜔𝜔
𝑑𝑑𝑑𝑑

+ 𝑇𝑇𝑀𝑀1
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝜔𝜔 = 𝐾𝐾Д𝑈𝑈Я − 𝐾𝐾𝑀𝑀𝑀𝑀𝐶𝐶 
 
Дане рівняння в операторній (символічній) формі за нульових початкових умов буде записано 

(𝑇𝑇𝑀𝑀1𝑇𝑇Я𝑝𝑝2 + 𝑇𝑇𝑀𝑀1𝑝𝑝 + 1)𝜔𝜔(𝑡𝑡) = 𝐾𝐾Д𝑈𝑈Я(𝑡𝑡) − 𝐾𝐾𝑀𝑀𝑀𝑀𝐶𝐶(𝑡𝑡) 
Аналогічним чином можна визначити рівняння будь-яких елементів ланцюга регулювання. 

Залежно від виду конкретного елемента, ступеня його ідеалізації і від вибору фізичної природи 
вхідний і вихідний величин будуть змінюватися вид і порядок диференціального рівняння, що 
характеризує аналізований елемент.  

Таким чином, можна укласти, що для аналітичного дослідження процесів, що відбуваються в 
системах регулювання, доцільно елементи системи розділяти на вигляд їх статичних і динамічних 
характеристик. Статичні характеристики елемента системи встановлюють зв'язок між вхідним і 
вихідним параметрами (величинами) в встановленому режимі. Статика системи регулювання 
визначає характеристику станів, що встановилися. Ця залежність може бути лінійною чи 
нелінійною. Більшість реальних статичних характеристик нелінійна, але розглядаючи відносно 
невеликі ділянки характеристик, що зв'язують вхід і вихід у нелінійних елементах, можна вважати, 
що збільшення входу і виходу можуть описуватися лінійними рівняннями, а значить, цей зв'язок 
можна лінійно-аризувати, що часто виконується на практиці при розрахунках і дослідах.  

У статиці параметри окремих ланок, пов'язаних один з одним, повинні бути узгоджені між собою, 
тобто вихід одного елемента і вхід наступного повинні за всіма показниками відповідати один 
одному. Для подібних цілей статичні характеристики окремих елементів вибудовують в одній 
системі координат і визначають допустимі робочі діапазони зміни їх вхідних і вихідних величин. 
Динамічні характеристики аналітично пов'язують вхідний і вихідний параметри в перехідних 
режимах.  

Отже, в даний час користуються декількома основними формами опису динамічних 
властивостей, як окремих елементів системи, так і їх поєднань. Найбільш часто для цих цілей 
користуються лінійними диференціальними рівняннями, широко використовують поняття 
передавальної функції, частотні і тимчасові характеристики, які в явному або перетвореному 
вигляді встановлюють закономірності зміни виходу в часі при відомому вході [1]. 

 
2.3.3 Перетворення Лапласа у застосуванні до теорії автоматичного регулювання 
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При дослідженні та розрахунках систем широко використовуються різні методи: аналітичний, 

чисельний, операторний, частотний. При дослідженні та розрахунках систем автоматики широко 
використовується операторний метод, що базується на перетворенні Лапласа [1]. 

Підставою для цього служить той факт, що подібне перетворення полегшує дослідження 
складних систем, замінюючи диференціальне рівняння алгебраїчним. При розв'язанні 
диференціальних рівнянь систем перетворення Лапласа дозволяє легко враховувати початкові 
умови та уникнути складних викладок, пов'язаних з обчисленням постійних інтегрування. 

Перетворення Лапласа перетворює функцію речовинного змінного на функцію комплексного 
змінного, перетворює диференційні рівняння в алгебраїчні, даючи переваги при вирішенні ряду 
завдань. Перетворення Лапласа засноване на застосуванні понять оригіналу f(t) та зображення F(p).  

Оригінал – функція речового аргументу.  
Зображення – функція комплексного аргументу.  
Для того, щоб функція була оригіналом, вона повинні задовольняти умови Диріхле. Функція f(t) 

зростає обмежено в розглянутому проміжку: 
𝑓𝑓(𝑡𝑡) ≤ 𝐴𝐴𝑒𝑒𝛼𝛼𝛼𝛼 

 
На проміжку часу, що розглядається, функція обмежена зверху і знизу (має max і min). 
На проміжку, що розглядається, функція має кінцеве число розривів першого роду. Розриви 

другого роду відсутні.  
За дотримання цих умов функція є оригіналом.  
Для отримання зображення використовується пряме перетворення Лапласа: 

𝐹𝐹(𝑝𝑝) = � 𝑓𝑓(𝑡𝑡) ⋅ 𝑒𝑒−𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑
∞

0
 

За допомогою цього перетворення переходять до зображення 
𝐹𝐹(𝑝𝑝)• =• 𝑓𝑓(𝑡𝑡);   𝐹𝐹(𝑝𝑝) = ℒ [𝑓𝑓(𝑡𝑡)]; 

 
𝑓𝑓(𝑡𝑡)• =• 𝐹𝐹(𝑝𝑝);  𝑓𝑓(𝑡𝑡) = ℒ −1[𝐹𝐹(𝑝𝑝)]; 
 

Зворотне перетворення за Лапласом: 

𝑓𝑓(𝑡𝑡) =
1

2𝜋𝜋
� 𝐹𝐹(𝑝𝑝) ⋅ 𝑒𝑒𝑝𝑝𝑝𝑝𝑑𝑑𝑑𝑑
𝛼𝛼+𝑗𝑗𝑗𝑗

𝛼𝛼−𝑗𝑗𝑗𝑗
 

У таблиці 2.1 представлені перетворення Лапласа для найчастіше використовуваних функцій у 
завданнях регулювання. 

 
Таблиця 2.1 – Перетворення Лапласу для функцій, що часто використовуються 
 

Оригінал функції f(t) Зображення функції F(p) 
 

δ(t) 1 

1(t) 
p
1

 

ate±  α±p
1

 

t 2p
1
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tsinω  22p ω+
ω

 

tcosω  22p
p
ω+

 

 
 
2.3.4 Поняття про передавальну функцію САК 
 
 
Теоретично автоматичного керування часто використовують операторну форму запису 

диференціальних рівнянь. У цьому вводиться поняття диференціального оператора 
p = d/dt отже, dy/dt = py(р), а pn = dn/dtn. Це лише інше позначення операції диференціювання. 

Зворотна диференціювання операція інтегрування записується як 1/p. В операторній формі вихідне 
диференціальне рівняння записується як алгебраїчне: 

 
a0p(n)y + a1p(n-1)y + ... + any = (a0p(n) + a1p(n-1) + ... + an)y =  (b0p(m) + b1p(m-1) + ... + bm)u. 
 
Варто відрізняти цю форму запису від операційного обчислення хоча б тому, що тут 

використовуються безпосередньо функції часу y(t), u(t) (оригінали), а не їх зображення Y(p), U(p), 
одержувані з оригіналів за формулою перетворення Лапласа. Разом з тим, за нульових початкових 
умов з точністю до позначень запису дійсно дуже схожі. Ця подібність лежить у природі 
диференційних рівнянь. Тому деякі правила операційного исчисления застосовні до операторної 
форми запису рівняння динаміки. 

Тому рівняння динаміки можна записати також у вигляді: 
 

𝑦𝑦 =
𝑏𝑏0𝑝𝑝𝑚𝑚 + 𝑏𝑏1𝑝𝑝𝑚𝑚−1+. . . +𝑏𝑏𝑚𝑚
𝑎𝑎0𝑝𝑝𝑛𝑛 + 𝑎𝑎1𝑝𝑝𝑛𝑛−1+. . . +𝑎𝑎𝑛𝑛

𝑢𝑢 =
𝐾𝐾(𝑝𝑝)
𝐷𝐷(𝑝𝑝)

𝑢𝑢 = 𝑊𝑊(𝑝𝑝) ⋅ 𝑢𝑢 

Диференціальний оператор W(p) називають передавальною 
функцією. 
Передатна функція (елемента чи системи) – це відношення лапласове зображення відповідної 

вихідної величини до лапласового зображення вхідної величини за нульових початкових умов 
(елемент або система перебувають у стані спокою). 

Вона визначає відношення вихідної величини ланки до вхідної у кожний момент часу: 
W(p) = y(t)/u(t), 

 
тому її ще називають динамічним коефіцієнтом посилення. 

У режимі d/dt = 0, тобто p = 0, тому передаточна функція вироджується в коефіцієнт 
передачі (посилення) елемента або системи K = bm/an. Знаменник передавальної функції (ліва 
частина характеристичного рівняння) 

D(p) = a0pn + a1pn - 1 + a2pn - 2 + ... + an 
 

називають характеристичним поліномом. 
Його коріння, тобто значення p, при яких знаменник D(p) обертається в нуль, а W(p) прагне до 

нескінченності, називаються полісами передавальної функції. 
Чисельник 

K(p) = b0pm + b1pm - 1+ ... + bm 
 

називають операторним коефіцієнтом передачі. 
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Його коріння, за якого K(p) = 0 і W(p) = 0, називаються нулями передавальної функції. 
Передатна функція є дробово-раціональною функцією від незалежної змінної р. У системах 

автоматики ступінь полінома знаменника завжди вищий або дорівнює ступеню полінома 
чисельника (m ≤ n). 

Ланка САК з відомою передатною функцією називається динамічною ланкою. Воно зображується 
прямокутником, всередині якого записується вираз передавальної функції. Тобто це звичайна 
функціональна ланка, функція якої задана математичною залежністю вихідної величини від вхідної 
в динамічному режимі. Для ланки з двома входами і одним виходом повинні бути записані дві 
передавальні функції по кожному з входів. Передатна функція є основною характеристикою ланки 
в динамічному режимі, з якої можна отримати всі інші характеристики. Вона визначається тільки 
параметрами системи і не залежить від вхідних і вихідних величин 

 
2.3.5 Поняття тимчасової характеристики (перехідна функція) 

 
Оцінити динамічні властивості САК або її окремих ланок можна з використанням їх 

диференціальних рівнянь, або за допомогою графічних характеристик. Застосовуються два типи 
таких характеристик - тимчасові (або перехідні) і частотні. Показники можуть бути знайдені 
експериментально або побудовані за рівнянням (також можна і за експериментальними 
характеристиками скласти рівняння ланки). 

Перехідні частотні характеристики однозначно пов'язані з рівнянням ланки (САК) і поряд з ним 
є вичерпним описом динамічних властивостей ланки (або САК). 

Для отримання тимчасових характеристик на вхід досліджуваного 
ланки подають один із типових впливів. 
Найбільше застосування в теорії та практиці автоматичного керування знаходять такі чотири 

типові впливи: ступінчасте, імпульсне, гармонійне і лінійне. 
Одиничний ступінчастий вплив - це вплив, який миттєво зростає від нуля до одиниці і далі 

залишається незмінним. 
Для математичного запису такого типового впливу (рисунок 2.6) використовують одиничну 

ступінчасту функцію: 

1(𝑡𝑡) = �
0,  при 𝑡𝑡  < 0
1,  при 𝑡𝑡  ≥ 0

. 
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Одинична ступінчаста функція може мати інші види. 
Як приклад ступінчастої дії можна навести будь-яке досить швидке збільшення або зменшення 

вхідної величини: миттєве збільшення навантаження на вал двигуна, різкий перепад температури, 
швидке збільшення навантаження в механічній системі, різке збільшення струму або напруги в 
електричній схемі і так далі, тобто найбільш несприятливі впливи для САК. Різке збільшення 
впливу на вході можна вважати одиничною ступінчастою функцією в тому випадку, якщо його 
тривалість набагато менше тривалості перехідного процесу, викликаного цим впливом. 

Поряд з перехідною характеристикою h(t) застосовується імпульсна перехідна характеристика, 
що являє собою реакцію ланки на одиничний імпульс. Одиничний імпульс - це математична 
ідеалізація гранично короткого імпульсного сигналу (малюнок 2.7). 

У реальних САК це удар у механічній системі, струм короткого замикання в електричній мережі, 
стрибки тиску в гідросистемі, при цьому тривалість імпульсу дуже мала порівняно з тривалістю 
перехідного процесу. 

 
 

x = δ ( t )

t
 

 
Малюнок2.7 – Одиничний імпульс 

 
Одиничний імпульс δ(t)  - імпульс, площа якого дорівнює одиниці при тривалості, що дорівнює 

нулю і амплітуді, що дорівнює нескінченності, тобто. 
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𝛿𝛿(𝑡𝑡) = �
∞,  при 𝑡𝑡  = 0

0,  при 𝑡𝑡 >  0,  𝑡𝑡  <  0
. 

 
Слід зазначити, що 𝛿𝛿(𝑡𝑡 )і одинична ступінчаста функція зв'язано співвідношенням 
 

𝛿𝛿(𝑡𝑡) =
𝑑𝑑1(𝑡𝑡)
𝑑𝑑𝑑𝑑

. 
 
Аналітичний вираз для імпульсної перехідної характеристики - імпульсна перехідна функція або 

функція ваги, позначається kі(t), тобто kі(t) = y(t) при x(t) = δ(t), при цьому 
 

𝑤𝑤(𝑡𝑡) = ℎʹ(𝑡𝑡) =
𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

. 
Як стандартний гармонійний вплив використовують сигнал синусоїдальної форми, що 

описується функцією (малюнок 2.8) 
𝑥𝑥(𝑡𝑡) = 𝐴𝐴 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠 𝜔𝜔 𝑡𝑡 (−∞ < 𝑡𝑡 < ∞), 

 
де А – амплітуда сигналу;  

T
πω 2=

– кругова частота, рад/с; 
Т - період сигналу, с. 
 

 
 

Малюнок 2.8 – Гармонійний вплив 
 
Гармонічні впливи широко використовуються при дослідженні точності та стійкості як 

стабілізуючих, так стежать і програмних автоматичних систем Це пояснюється двома 
обставинами: 

а) реальні обурення часто мають періодичний характер та 
тому можуть бути представлені у вигляді суми гармонійних складових; 
б) математичний апарат аналізу автоматичних систем добре розроблений саме для гармонійних 

впливів. 
Для стежать і програмних систем типовим є лінійний вплив (малюнок 2.9) 

𝑥𝑥(𝑡𝑡) = 1(𝑡𝑡)𝑎𝑎1𝑡𝑡 (0 ≤ 𝑡𝑡 < +∞) 
 
де а1 - Коефіцієнт характеризує швидкість наростання впливу x(t). 
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Малюнок 2.9 – Лінійно наростаючий сигнал 

 
Слід також зауважити, що між передатною функцією ланки та перехідною характеристикою h(t) 
існує взаємозв'язок 
 

𝑊𝑊(𝑝𝑝) = 𝑝𝑝 ⋅ � ℎ(𝑡𝑡) ⋅ 𝑒𝑒−𝑝𝑝⋅𝜏𝜏
∞

0
⋅ 𝑑𝑑𝑑𝑑, 

а між W(p) та kі (t) 
 

𝑊𝑊(𝑝𝑝) = 𝑝𝑝 ⋅ � 𝑘𝑘и(𝑡𝑡) ⋅ 𝑒𝑒−𝑝𝑝⋅𝜏𝜏
∞

0
⋅ 𝑑𝑑𝑑𝑑 

Графічно процес отримання перехідної характеристики представлений малюнку 2.10, а отримання 
вагової функції – малюнку 2.11. 

 
Малюнок 2.10 – Перехідна характеристика 

 
 

Малюнок 2.11 – Вагова функція 
 
Перехідні процеси, що описуються перехідними функціями, вкрай різноманітні, і в основному їх 
можна розділити на три основні види (малюнок 2.12): 
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- коливальні (1); 
- Аперіодичні (2); 
– монотонні (3). 
Передавальні та перехідні функції типових ланок представлені в додатку А. 
 

t

y(t) =h(t)

1

2

3

0  
Малюнок 2.12 – Основні види перехідних характеристик 
 
 

2.3.6 Частотні характеристики 
 

 
При аналізі систем автоматики також широко використовується поняття про частотні 

характеристики, яке застосовується як до окремих ланок, так і до системи в цілому. Якщо на вхід 
лінійної розімкнутої системи подати гармонійне обурення, то через деякий час після подачі такого 
обурення, коли загаснуть всі рухи, що визначаються перехідним процесом, на виході елементарної 
ланки або системи встановиться також гармонійна зміна вихідної величини з тією ж частотою, яку 
має вхідна величина, але з іншими ампліт. 

Амплітуда та фаза на виході за інших рівних умов будуть залежати від частоти впливу, що 
обурює. За ними можна далі судити про динамічні властивості як елементарних ланок, а й складних 
замкнутих систем автоматичного регулювання. 

На можливість такого судження стосовно дослідження динамічних властивостей електронних 
підсилювачів із зворотним зв'язком у 1932 вказував Найквіст, а на можливість застосування 
частотних методів аналізу до систем регулювання вказав в 1938 А.В. Михайлів. 

Знаючи частотну характеристику елемента, можна визначити реакцію елемента на 
гармонійний вплив будь-якої частоти, і навіть у сумі гармонійних впливів різної частоти. Частотні 
характеристики широко використовуються в теорії та практиці автоматичного керування, так як 
реальні обурення, що діють на автоматичні системи, можуть бути представлені як сума 
гармонійних сигналів. 

Перехід від передавальної функції ланки здійснюється простою заміною, тобто з аналізованого 
процесу як би виключається експонента. Фізично частотні характеристики ланки мають просту 
інтерпретацію. Розглянемо її на прикладі ланки малюнку 2.13. 
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K(jω) y(t)x(t)

 
Малюнок 2.13 – Ланка з частотною характеристикою 

 
Нехай – синусоїдальна вхідна дія. Тоді в режимі, що встановився, вихідний сигнал також 
буде синусоїдальним:  
 
. 𝑦𝑦(𝑡𝑡) = 𝑦𝑦𝑚𝑚 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔 + 𝜙𝜙) = 𝑦𝑦𝑚𝑚 ⋅ 𝑒𝑒𝑗𝑗(𝜔𝜔𝜔𝜔+𝜙𝜙) 
 
Комплексний коефіцієнт посилення  
 

𝐾𝐾(𝑗𝑗𝑗𝑗) =  
𝑦𝑦(𝑡𝑡)
𝑥𝑥(𝑡𝑡)

  =   
𝑦𝑦𝑚𝑚
𝑥𝑥𝑚𝑚

𝑒𝑒𝑗𝑗𝑗𝑗 

 
До(jω) може бути отриманий експериментально, або шляхом підставки jω в передавальну 

функцію ланки замість p. 
Залежність відношення амплітуд вихідного та вхідного сигналу від частоти називають 

амплітудно-частотною характеристикою (скорочено – АЧХ) та позначають А() (рисунок 2.14)  
 

𝑦𝑦𝑚𝑚
𝑥𝑥𝑚𝑚

= 𝐴𝐴(𝜔𝜔) 

 
АЧХ показує, як елемент пропускає сигнали різної частоти. Оцінка пропускання проводиться 

стосовно амплітуд в режимі, що встановився. АЧХ має розмірність, що дорівнює відношенню 
розмірності вихідної величини до розмірності вхідний. 

АФХ W(jω) як і будь-яка комплексна величина, може бути 
представлена: 
а) у показовій формі 

𝑊𝑊(𝑗𝑗𝑗𝑗) = 𝐴𝐴(𝜔𝜔)𝑒𝑒𝑗𝑗𝑗𝑗(𝜔𝜔), 
 
 
де А(ω)  – модуль АФГ, 
ϕ(ω)– кут зсуву по фазі; 
б) в алгебраїчній  
 

𝑊𝑊(𝑗𝑗𝑗𝑗) = 𝑅𝑅(𝜔𝜔) + 𝑗𝑗𝑗𝑗(𝜔𝜔) 
 
в) тригонометричної 

𝑊𝑊(𝑗𝑗𝑗𝑗) = 𝐴𝐴(𝜔𝜔) 𝑐𝑐𝑐𝑐𝑐𝑐 𝜙𝜙 (𝜔𝜔) + 𝑗𝑗𝑗𝑗(𝜔𝜔) 𝑠𝑠𝑠𝑠𝑠𝑠 𝜙𝜙 (𝜔𝜔). 
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Малюнок 2.14 – Амплітудно-частотна характеристика 
 
При зміні частоти від нуля до нескінченності вектор W(jω) повертається навколо початку 

координат, при цьому одночасно збільшується або зменшується довжина вектора. Крива, яку 
опише кінець вектора, звана годографом, і є АФХ. Кожній точці показники відповідає певне 
значення частоти. 

Проекції вектора W(jω) на дійсну і уявну осі називають відповідно дійсною і уявною частотними 
характеристиками і позначають 

𝑈𝑈(𝜔𝜔) = 𝑅𝑅𝑅𝑅𝑊𝑊 (𝑗𝑗𝑗𝑗), 
𝑉𝑉(𝜔𝜔) = 𝐼𝐼𝐼𝐼𝑊𝑊 (𝑗𝑗𝑗𝑗). 

У цьому, дійсна частотна характеристика U(ω) – завжди парна функція частоти, а уявна 
характеристика V(ω) – завжди непарна функція. 

Залежність фазового зсуву між вхідним і вихідним сигналами від частоти називають фазо-
частотною характеристикою (ФЧХ) і позначають ϕ(ω) (рисунок 2.15). Аналітичні вирази А(ω) і 
ϕ(ω)  називають відповідно амплітудною та фазовою частотними функціями. 

 
Малюнок 2.15 – Фазочастотна характеристика 

 
ФЧХ показує, яке відставання чи випередження вихідного сигналу по фазі створює елемент при 

різних частотах в режимі, що встановився. 
Амплітудну і фазову частотні характеристики можна об'єднати в одну загальну - амплітудно-

фазову частотну характеристику (АФЧХ або АФХ). Амплітудно-фазова частотна характеристика 
W(jω) є функцією комплексного змінного jω, модуль якої дорівнює А(ω), а аргумент дорівнює ϕ(ω). 
Кожному фіксованому значенню частоти ωi i відповідає комплексне число W(jωi), яке на 
комплексній площині можна зобразити вектором, що має довжину А(ωi) та кут повороту ϕ(ωi) (рис. 
2.16). 
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Негативні значення ϕ(ω), що відповідають відставанню 
вихідного сигналу від вхідного, прийнято відраховувати за годинниковою стрілкою від 

позитивного напрямку дійсної осі 
К(jω) = (А, φ). 

Зв'язок між частотними функціями наступний: 
𝐾𝐾(𝑗𝑗𝑗𝑗) = 𝑈𝑈(𝜔𝜔) + 𝑗𝑗𝑗𝑗(𝜔𝜔), 

 
𝜙𝜙(𝜔𝜔) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑊𝑊 (𝑗𝑗𝑗𝑗) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑉𝑉(𝜔𝜔)

𝑈𝑈(𝜔𝜔)
, 

 
𝐴𝐴(𝜔𝜔) = |𝑊𝑊(𝑗𝑗𝑗𝑗)| = �𝑈𝑈2(𝜔𝜔) + 𝑉𝑉2(𝜔𝜔). 

 

 
Малюнок 2.16 – Амплітудно-фазова частотна характеристика 
 
При практичних розрахунках автоматичних систем зручно використовувати 

частотні характеристики, побудовані в логарифмічній системі координат. Такі 
характеристики називають логарифмічні. Вони мають меншу кривизну і тому 
можуть бути приблизно замінені ламаними лініями, складеними з декількох 
прямолінійних відрізків. Причому ці відрізки здебільшого вдається побудувати без 
громіздких обчислень за допомогою деяких простих правил. 

Крім того, у логарифмічній системі координат легко знаходити характеристики 
різних сполук елементів, так як множенню та поділу звичайних характеристик 
відповідає додавання та віднімання ординат логарифмічних характеристик. 

За одиницю довжини осі частот логарифмічних характеристик приймають 
декаду. 

Декада – інтервал частот, укладений між довільним значенням ωi i та його 
десятикратним значенням 10ωi . Відрізок логарифмічної осі частот, що відповідає 
одній декаді, дорівнює 1. 

Зазвичай у розрахунках використовують логарифмічну амплітудну частотну 
характеристику (ЛАЧХ). 

𝐿𝐿(𝜔𝜔) = 20 𝑙𝑙𝑙𝑙 𝐴𝐴 (𝜔𝜔), 
ординати якої вимірюють у логарифмічних одиницях – белах (Б) чи децибелах (дБ). 
При побудові фазової частотної характеристики логарифмічний масштаб застосовують тільки 

для осі абсцис. 
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На малюнку 2.17 показані ЛАЧХ L(ω) (товста лінія) і відповідна їй наближена (асимптотична) 
характеристика Lа(ω) у вигляді прямолінійних відрізків (тонка лінія) 

 
Малюнок 2.17 – Логарифмічна амплітудно-фазова частотна характеристика 
 
Частоти, що відповідають точкам стикування відрізків, називають сполучними та позначають 

ωс. 
2.3.7 Динамічна ланка САК 

 
 
При дослідженнях та розрахунках автоматичних систем неможливо скласти математичний опис 

усієї системи одночасно. Для полегшення завдання систему розбивають на окремі елементи і для 
кожного з них складають диференціальні рівняння, які записуються на основі відповідних їм 
фізичних законів. Для відображення динамічних властивостей елементів незалежно від їх фізичної 
природи використовують поняття динамічної ланки.  

Динамічне ланка - частина автоматичної системи або елемента, що описується певним 
диференціальним рівнянням і володіє властивістю спрямованої дії.  

Динамічне ланка – ланка САК з відомою передавальною функцією.  
Спрямованість дії ланки означає, що вплив (рисунок 2.18) передається тільки в одному 

напрямку – від входу до виходу, та  вихідна величина x2(t) впливає вхідну – x1(t). 

x 1 ( t ) x 2 ( t )

 
Малюнок 2.18 – Динамічна ланка  

 
Динамічним ланкою можна уявити елемент, сукупність елементів, автоматичну систему 

загалом. Слід зазначити, що позначення динамічного ланки не несе інформації про зв'язок вхідний 
і вихідний величин, тоді як із аналізі САК необхідно мати чітке уявлення про залежність цих 
величин. 

Математичне опис САК може бути зроблено різними способами (наприклад, за допомогою 
диференціального рівняння або передавальних функцій). Ланка САК представляється, як звичайна 
функціональна ланка, функція якого задана математичною залежністю вихідної величини від 
вхідної в динамічному режимі. Для ланки з двома входами і одним виходом повинні бути записані 
дві передавальні функції по кожному з входів. Передатна функція є основною характеристикою 
ланки в динамічному режимі, з якої можна отримати всі інші характеристики. Вона визначається 
лише параметрами системи і не залежить від вхідних і вихідних величин. 
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Динаміка більшості функціональних елементів САК незалежно від виконання може бути 
описана однаковими за формою диференційними рівняннями не більше другого порядку. Такі 
елементи називають елементарними динамічними ланками. Передаточна функція елементарної 
ланки в загальному вигляді задається ставленням двох поліномів не більш як другого ступеня: 

𝑊𝑊Э(𝑝𝑝) =
𝑏𝑏0𝑝𝑝2 + 𝑏𝑏1𝑝𝑝 + 𝑏𝑏2
𝑎𝑎0𝑝𝑝2 + 𝑎𝑎1𝑝𝑝 + 𝑎𝑎2

 

 
Відомо також, що будь-який поліном довільного порядку можна розкласти на прості 

співмножники не більше, ніж другого порядку. Так за теоремою Вієта модно записати 
D(p) = a0pn + a1pn - 1 + a2pn - 2 + ... + an = a0(p – p1)(p – p2)...(p – pn), 

де p1, p2, ..., pn - Корені полінома D (p). 
Аналогічно 

K(p) = b0pm + b1pm - 1+ ... + bm = b0(p – p1
*)(p – p2

*)...(p – pm
*), 

 
де p1 *, p2 *, ..., pm * - Корені полінома K (p). 
Тобто 

𝑊𝑊(𝑝𝑝) =
𝑏𝑏0𝑝𝑝𝑚𝑚 + 𝑏𝑏1𝑝𝑝𝑚𝑚−1+. . . +𝑏𝑏𝑚𝑚
𝑎𝑎0𝑝𝑝𝑛𝑛 + 𝑎𝑎1𝑝𝑝𝑛𝑛−1+. . . +𝑎𝑎𝑛𝑛

=
𝑏𝑏0(𝑝𝑝 − 𝑝𝑝1∗)(𝑝𝑝 − 𝑝𝑝2∗). . . (𝑝𝑝 − 𝑝𝑝𝑚𝑚∗ )
𝑎𝑎0(𝑝𝑝 − 𝑝𝑝1)(𝑝𝑝 − 𝑝𝑝2). . . (𝑝𝑝 − 𝑝𝑝𝑛𝑛)

 

Коріння будь-якого полінома може бути або речовим pi = ai, 
або комплексними попарно пов'язаними pi = ai ± jωi. Будь-якому речовому кореню при 

розкладанні полінома відповідає співмножник (p - ai). Будь-яка пара комплексно пов'язаного 
коріння відповідає по-іншому другого ступеня, так як  

 
(p – ai + jωi )(p – ai – jωi ) = (p – ai)2 + ωi

2 = p2 – 2pai + (ai
2 + ωi

2). 
Тобто будь-яку складну передатну функцію лінеаризованої САК можна представити як добуток 

передавальних функцій елементарних ланок. Кожній такій ланці в реальній САК, як правило, 
відповідає якийсь окремий вузол. Знаючи властивості окремих ланок можна будувати висновки 
про динаміки САК загалом. 

 
2.4 Основні типові ланки систем регулювання 

 
 
Для вивчення динамічних властивостей системи доцільно 
розглядати окремі її елементи тільки з точки зору їх динамічних властивостей незалежно від їх 

конкретного виконання. 
Для того, щоб розглянути загальні властивості елементів системи та знати різницю між ними, 

необхідно впливати на них однотипними обуреннями. Одним з таких типових впливів є 
розглянута раніше поодинока ступінчаста (поштовхоподібна) функція. Тоді в залежності від 

виду перехідного, що виникає в елементі 
процесу можна відносити цей елемент того чи іншого типу. Усю різноманітність існуючих 

лінійних елементів можна охарактеризувати 
невеликою кількістю типових ланок або їх комбінацією. 
Розрізняють такі типи ланок: 
а) безінерційне; 
б) інерційне першого порядку; 
в) диференціююча; 
г) інерційне другий порядок; 
д) інтегрує; 
е) інтегро-диференціююче; 
ж) запізнювальне. 
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2.4.1 Безінерційна ланка 

 
Безінерційна ланка є найпростішою серед усіх типових ланок. Воно передає сигнал із входу на 

вихід миттєво, без спотворень його форми. У ланці може відбуватися тільки посилення або 
послаблення миттєвих значень вхідної величини. 

Ланку прийнято називати безінерційною, якщо зв'язок між входом і виходом визначається 
виразом: 

 
y(t) = Kx(t), 

 
де у (t) - Вихідна величина; 
х(t) – вхідна величина; 
К – коефіцієнт посилення ланки. 
Структурно дана ланка має вигляд, представлений на малюнку 2.19. 
 

 
Малюнок 2.19 – Безінерційна ланка 

 
Дану ланку також називають підсилювальним мулом безймістковим. Його передатна функція 

має вигляд: 

𝑊𝑊(𝑝𝑝) =
𝑦𝑦(𝑝𝑝)
𝑥𝑥(𝑝𝑝)

= 𝐾𝐾(𝑝𝑝) = 𝐾𝐾 

Прикладом конструктивного виконання такої ланки можуть служити: 
а) електронна підсилювальна лампа; 
б) механічний редуктор; 
в) важільне зчленування ( . 2.20). 
 

 
Малюнок 2.20 – Приклад безінерційної ланки 

Перехідна характеристика ланки (рис. 2.21). 
 

=)(th ℒ )t(1K
p
1K1 ⋅=






− . 
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Малюнок 2.21 – Графік перехідного процесу для безінерційної ланки 
 
Вагова функція (рисунок 2.22) 

𝑤𝑤(𝑡𝑡) = ℎʹ(𝑡𝑡) = 𝐾𝐾𝐾𝐾(𝑡𝑡) 

     

w(t)

t
kδt

 
Малюнок 2.22 – Вагова функція безінерційної ланки 

 
 
 
2.4.2 Інерційна ланка першого порядку (астатична)  
 
 
Ланка називається інерційною, якщо зв'язок між виходом і виходом ланки визначається 

диференціальним рівнянням виду 

𝑦𝑦(𝑡𝑡) + 𝑇𝑇
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝐾𝐾𝐾𝐾(𝑡𝑡) 

де х(t), у(t) – відповідно вхідна та вихідна величини ланки;  
К – коефіцієнт посилення ланки;  
Т – стала часу ланки.  
Подібну ланку також називають аперіодичним, статичним, 
одноємнісним, релаксаційним.  
Передатна функція інерційної ланки має вигляд 
 

𝑊𝑊(𝑝𝑝) =
𝑦𝑦(𝑝𝑝)
𝑥𝑥(𝑝𝑝)

= 𝐾𝐾(𝑝𝑝) =
𝐾𝐾

𝑇𝑇𝑇𝑇 + 1
 

Структурно дана ланка має вигляд, представлений на 
малюнку 2.23. 

 
Прикладом конструктивного виконання подібного є:  
а) пасивний чотириполюсник;  
б) термопара;  
в) магнітний підсилювач;  
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г) електричний двигун із рядом припущень, якщо вхід – напруга, а вихід – кутова швидкість 
(малюнок 2.24). 

Перехідна характеристика ланки (малюнок 2.25 
 

 
ℎ(𝑡𝑡) = ℒ−1 � 𝐾𝐾

1+𝑇𝑇𝑇𝑇
⋅ 1
𝑝𝑝
� = 𝐾𝐾(1 − 𝑒𝑒

−𝑡𝑡
𝑇𝑇 ). 

 
Малюнок 2.24 – Електричний двигун як інерційна ланка 

 

  
Малюнок 2.25 – Графік перехідного процесу для інерційної ланки 

 
При t = T перехідна характеристика досягає приблизно 63,2% значення K, при t = 2T приблизно 

86,5%, при t = 3T 
приблизно 95,0 % при t = 4T приблизно 98,2 %. 
Вагова функція (рисунок 2.25)  

. T
t

e
T
K)t(h)t(w

−

=′= . 
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Малюнок 2.25 – Вагова функція інерційної ланки 

 

 2.4.3 Диференціююча ланка 

Розрізняють ідеальне і реальне ланки, що диференціюють. Ідеальна 
диференціююча ланка характеризується рівнянням 

 

dt
)t(dxK)t(y =  

Таким чином, у ланці вихідна величина пропорційна швидкості зміни вхідної величини 
При зміні вхідної величини перехідний процес у подібній ланці теоретично відбувається 

миттєво. При подачі на вхід поштовхоподібного обурення на виході виходить миттєвий вихідний 
імпульс, що теоретично має нескінченно велику амплітуду, відповідну нескінченно великій 

швидкості зміни вхідний величини у момент подачі поштовху. 
Передатна функція ланки має вигляд 

Kp)p(K
)p(x
)p(y)p(W === . 

Структурно ідеальна ланка, що диференціює, має вигляд, наведений на малюнку 2.26. 

 
 

Малюнок 2.26 – Ідеальна диференціююча ланка  
 
Перехідна характеристика (рисунок 2.27) 

=)t(h ℒ =






−

p
1Kp1 ℒ K]K[1 =− ℒ )t(K]1[1 δ=− . 

Вагова функція ланки дорівнює (рисунок 2.28) 
)t(K)t(h)t(w δ′⋅=′= . 

Прикладами ідеальних диференційних ланок можуть служити: 
а) вал двигуна (рисунок 2.29); 
б) ділянку електричного ланцюга з ємністю (рис. 2.30);  
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в) ділянку електричного кола з індуктивністю (рисунок 2.31). 

 
Рисунок 2.27 – Перехідний процес в ідеальному диференціюючій ланці 

 
Оскільки практично реалізувати ідеальну диференціюючу ланку не представляється можливим, 

то застосовуються ланки, що виконують диференціювання більш менш наближено і їх називають 
реальні диференціюючі ланки. 

 
Малюнок 2.28 - Вагова функція ідеальної ланки, що диференціює 

 
Рисунок 2.29 – Приклад ідеальної ланки, що диференціює (вал двигуна) 

 
Малюнок 2.30 – Приклад ідеальної ланки, що диференціює (ємність) 
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Малюнок 2.31 – Приклад ідеальної ланки, що диференціює (індуктивність)  
 

Диференціальне рівняння реальної ланки, що диференціює, має вигляд: 
 

dt
)t(dxK

dt
)t(dyT)t(y =+ . 

Передатна функція ланки 

1Tp
pK

1Tp
KTp)p(K

)p(x
)p(y)p(W 1

+
=

+
===  

де К1 = КТ. 
Структурно реальна диференціююча ланка представлена на малюнку 2.32. 
 

 
Малюнок 2.32 – Реальна ланка, що диференціює  
 
Прикладом реальної ланки, що диференціює, може служити 
RC-ланцюжок (рисунок 2.33). 

R

Iн=0

U1 U2

С

 
Рисунок 2.33 – Приклад реальної ланки, що диференціює  
 
Передатна функція ланки (рисунок 2.32) визначатиметься наступним чином: 
 

𝑊𝑊(𝑝𝑝) =
𝑅𝑅

1
𝐶𝐶𝐶𝐶 + 𝑅𝑅

=
𝑅𝑅𝑅𝑅𝑅𝑅

𝑅𝑅𝑅𝑅𝑅𝑅 + 1
=

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 1

 

де Т = RC - постійна часу. 
Перехідна характеристика (рисунок 2.34) 
ℎ(𝑡𝑡) = ℒ−1 � 𝐾𝐾𝐾𝐾𝐾𝐾

𝑇𝑇𝑇𝑇+1
⋅ 1
𝑝𝑝
� = 𝐾𝐾𝐾𝐾 �1

𝑇𝑇
𝑒𝑒
−𝑡𝑡
𝑇𝑇 � ⋅ 1(𝑡𝑡) = 𝐾𝐾𝑒𝑒

−𝑡𝑡
𝑇𝑇 ⋅ 1(𝑡𝑡) 

 
Малюнок 2.34 – Перехідна характеристика реального диференціюючої ланки 
 
Вагова функція (млюнок 2.35) 
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T
t

e
T
k)t(h)t(w

−

⋅
−

=′= . 

 
Малюнок 2.35 – Вагова функція реального диференціюючої ланки  
 
Як приклад подібної ланки можна навести пасивні чотириполюсники, що містять RC (RL) в 

електричних ланцюгах, заспокійливий з пружиною в механічних ланцюгах. Ці ланки є 
випереджаючими і їх можна застосовувати для корекції. 

 
2.4.4 Інтегруюча ланка 

 
 
Ланку називають ідеально інтегруючою, якщо її вихідна величина пропорційна інтегралу за 

часом від величини, що подається на вхід, і визначається рівнянням виду: 
 

𝑦𝑦(𝑡𝑡) =
𝐾𝐾
𝑇𝑇
�𝑥𝑥(𝑡𝑡)𝑑𝑑𝑑𝑑 

Передатна функція ланки: 

𝑊𝑊(𝑝𝑝) =
𝑦𝑦(𝑝𝑝)
𝑥𝑥(𝑝𝑝)

= 𝐾𝐾(𝑝𝑝) =
𝐾𝐾
𝑇𝑇𝑇𝑇

 

Структурно ланка має вигляд, як у малюнку 2.36. 

 
Малюнок 2.36 – Ідеальна інтегруюча ланка 

 
Перехідна характеристика (рисунок 2.37) 

ℎ(𝑡𝑡) = ℒ−1 � 𝐾𝐾
𝑇𝑇𝑇𝑇
⋅ 1
𝑝𝑝
� = 𝐾𝐾

𝑇𝑇
⋅ 𝑡𝑡 

 
Малюнок 2.37 – Перехідна характеристика інтегруючої ланки 
 
Імпульсна перехідна характеристика (або функція ваги) має вигляд (рисунок 2.38): 
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( ) ( ) kthtw =′=  

 
Малюнок 2.38 – Вагова функція ідеальної інтегруючої ланки 
 
Інтегруючу ланку також називають астатичним. Це положення пояснюється тим, що для 

створення астатичної системи регулювання необхідна наявність у ній інтегруючої ланки. 
Водночас, слід пам'ятати, що тільки наявність інтегруючої ланки не є достатньою ознакою для 
віднесення системи регулювання до астатичної. 

Прикладами конструктивного виконання інтегруючої ланки можуть служити:  
а) поршневий гідравлічний виконавчий двигун (малнок 2.39); 
 

вихід 

вхід 
Малюнок 2.39 – Поршневий гідравлічний виконавчий двигун 
 
Динаміка процесів у коливальній ланці описується рівнянням 

( ) ( ) ( ) ( )tkxty
dt

tdyT2
dt

tydT 2

2
2 =+ξ+ , 

де k – коефіцієнт посилення ланки; 
Т - постійна часу коливальної ланки; 
ξ - коефіцієнт демпфування ланки (або коефіцієнт загасання). 
Залежно від величини коефіцієнта демпфування розрізняють чотири типи ланок: 
а) коливальне 0<ξ<1; 
б) аперіодична ланка II порядку >1; 
в) консервативна ланка ξ = 0; 
г) нестійка коливальна ланка <0. 
Перехідна характеристика коливальної ланки (малюнок. 2.41) 

( ) ( )













ϕ+ω

ξ−
−=

α−
tsin

1

e1kth 02

t
, 

 де  
0

0

22

0
2T;1arctg;

T
1;

T ω
π

=
ξ
ξ−

=ϕ
ξ−

=ω
ξ

=α . 
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Малюнок 2.41 – Перехідний процес коливальної ланки 
 
Амплітуди перших двох коливань визначають величину 
 

𝛼𝛼 =
1
𝑇𝑇0
𝑙𝑙𝑙𝑙
𝑎𝑎1
𝑎𝑎0

 

Чим ближче коефіцієнт загасання до одиниці, тим менше амплі-туди коливань, чим менше Т, 
тим швидше встановлюються перехідні процеси. 

Вагова функція (рисунок 2.42) 

( ) ( ) ( ) ( ) ( )






ϕ+ω⋅

ξ−

ω⋅






−ϕ+ω⋅⋅

ξ−

α−
−⋅=′=

α−
α− tcos

1

etsine
1

kthtw 02
0

t

0
t

2
, 

( ) ( ) ( ) ( )( )ϕ+ω⋅ω−ϕ+ωα⋅
ξ−

=′=
α−

tcostsin
1

kethtw 0002

t
 

 
Малюнок 2.42 – Вагова функція коливальної ланки 
 
Для аперіодичного ланки другого порядку перехідна характеристика визначається (малюнок 

2.43)  
 

( )














−
+

−
−=

−−
21 T
t

21

2T
t

21

1 e
TT

Te
TT

T1kth  , 

де  

1

TT
21
−ξ+ξ

= , 
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,
1

TT
22
−ξ−ξ

=  

 
21 TT > . 

При ξ >1 коливальна ланка називається аперіодичним ланкою другого порядку (послідовне 
з'єднання двох аперіодичних ланок з постійними часу Т1 і Т2). 

 
Малюнок 2.43 – Перехідний процес аперіодичної ланки другого порядку  
 
Вагова функція (рисунок 2.44) 

  

( ) ( )


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
⋅




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
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Малюнок 2.44 - Вагова функція аперіодичного ланки 
 
Для консервативної ланки перехідна характеристика (рисунок 2.45) буде визначено 

 ℎ(𝑡𝑡) = 𝑘𝑘 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔0𝑡𝑡 + 𝜙𝜙) 
або можна записати так 

( ) ( )[ ]tcos1kth 0ω−= , 
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Де ω0  - величина, зворотна постійної часу ( T
1

0 =ω ); 
2
π

=ϕ . 

 
Малюнок 2.45 – Перехідний процес консервативної ланки 
 
Вагова функція консервативної ланки (малюнок. 2.46) 

.  
Малюнок 2.46 – Вагова функція консервативної ланки 
 
Нестійка коливальна ланка має перехідну характеристику (рисунок 2.47) 

( ) ( )













ϕ+ω

ξ−
−=

α
tsin

1

e1kth 02

t
. 

 
Малюнок 2.47 – Перехідна характеристика нестійкої коливальної ланки 
 
Усі перехідні характеристики коливатимуться вздовж величини k. 
Передавальні функції ланок будуть такими: 
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а) коливальна ланка (малюнок 2.48) 
 

( )
1pT2pT

kpW 22 +ξ+
=  

б) аперіодична ланка (рисунок 2.49) 

( )
( ) ( )( )1pT1pT

k
1pTTpTT

kpW
2121

2
21 ++

=
+++

=  

в) консервативна ланка 

( )
1pT

kpW 22 +
=  

 
Малюнок 2.48 – Коливальна ланка 

 
Малюнок 2.49 – Аперіодична ланка 

 
 
Контрольні запитання 
 
1. Що таке статична характеристика елемента чи системи? 
2. Який режим САК називається динамічним? 
3. Які характеристики називаються лінійними та нелінійними? 
4. Що називається регулюванням? 
5. Назвіть можливі види перехідних процесів у САК, які є допустимими для нормальної роботи 

САК? 
6. Що називається рівнянням динаміки? Який його вигляд? 
7. Як провести теоретичне дослідження динаміки САК? 
8. Що називається лінеаризацією і який її геометричний зміст? 
9. У чому полягає математичне обґрунтування лінеаризації? 
10. Як проводиться лінеаризація диференціальних рівнянь САК? 
11. Чому рівняння динаміки САК називається рівнянням у відхиленнях? 
12. Чи справедливий для рівняння динаміки САК принцип суперпозиції? Чому? 
13. Що виражає диференціальне рівняння ланки? 
14. Запишіть лінеаризоване рівняння динаміки у звичайній та в операторній формах? 
15. У чому сенс і які властивості має диференціальний оператор p? 
16. Що називається і які Ви знаєте типові вхідні дії? Навіщо вони потрібні? 
17. Що називається перехідною характеристикою? 
18. Що називається імпульсною перехідною характеристикою? 
19. Що називається тимчасовими характеристиками? 
20. Як отримати криву перехідного процесу за складної форми вхідного впливу, якщо відома 

перехідна характеристика ланки? 
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21. Що називається безінерційною ланкою, її рівняння динаміки, передатна функція, вид 
перехідної характеристики? 

22. Що називається інтегруючою ланкою, її рівняння динаміки, передатна функція, вид перехідної 
характеристики? 

23. Що називається аперіодичним ланкою, його рівняння динаміки, передатна функція, вид 
перехідної характеристики? 

24. Що називається коливальною ланкою, її рівняння динаміки, передатна функція, вид 
перехідної характеристики? 

25. Що називається консервативною ланкою, її рівняння динаміки, передатна функція, вид 
перехідної характеристики? 

26. Чому не є елементарними інерційні ланки другого порядку з коефіцієнтом загасання більшим 
чи рівним одиниці? 

27. Що називається ідеальною ланкою, що диференціює? Чому її не можна реалізувати? 
28. Що називається реальним диференціюючим ланкою, його рівняння динаміки, передатна 

функція, вид перехідної характеристики? 
29. Що таке постійна часу та коефіцієнт посилення? Яку роль ці параметри грають у перехідних 

процесах? 
 

 
3. ПРИКЛАДИ РІШЕННЯ ПРАКТИЧНИХ ЗАВДАНЬ 

 
 3.1 Алгоритмічний опис САК 
 
 
На підставі структурної схеми (рисунку 3.1) виконати її опис згідно з основними поняттями та 

визначеннями ТАК, якщо відомі: 
а) U(t) – вплив, що задає (загальний сигнал в систему); 
б) x(t) – керуючий вплив (те, що виробляє регулятор); 
в) y(t) - керована величина; 
г) e(t) – відхилення (помилка) керованої величини від впливу, що задає. 

 
 

Малюнок 3.1 – Початкова структурна схема 
 

Відповідно до структурної схеми малюнка 6.1 можна виділити такі елементи: 
а) 1 – пристрій, що задає, яке перетворює вхідний сигнал U(t) в сигнал, зручний для подальшого 

використання; 
б) 2 - порівнюючий пристрій, виробляє сигнал помилки (відхилення) як різницю сигналу, що 

задає, і керованої величини; 
в) 3  перетворюючий пристрій, перетворює сигнал помилки 
іншу форму, зручну для подальшого використання, при цьому не 
виконуються функції посилення та корекції; 
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г) 4 і 8 - коригувальні пристрої, покращують динамічні властивості регулювання і підвищують 
стійкість (4 - послідовна корекція, 8 - паралельна корекція); 

д) 5 - порівнюючий пристрій місцевого зворотного зв'язку; 
е) 6-підсилювальне пристрій, посилює потужність сигналу; 
ж) 7 - виконавчий пристрій, що виробляє керуюче 
вплив x(t) безпосередньо на об'єкт керування; 
з) 9 – чутливий елемент, що фіксує (вимірює) керовану величину y(t); 
і) 10 – елемент головного зворотного зв'язку, перетворює керовану величину y(t) у вигляд, 

зручний для порівняння з сигналом, що задає; 
к) ОУ - об'єкт керування. 
Блоки 1,9 і 10 утворюють датчик, а блоки з 3-го по 8-й - сервомеханізм. 
 
3.2 Визначення статичних та динамічних характеристик елемента САК 
 
Для елемента САК (чотириполюсника), схема та параметри якого наведені на малюнку 3.2, знайти 

наступні статичні та динамічні характеристики: 
а) диференціальне рівняння; 
б) перехідну функцію; 
в) передавальну функцію; 
г) передавальний коефіцієнт 

 

 
 
Малюнок 3.2 – Схема та параметри елемента 
 
Складемо диференціальне рівняння елемента. Відповідно до законів лінійних електричних кіл 

записуємо наступні рівняння: 
R∙i+ uС  = e,                                                (3.1) 
 
𝑖𝑖 = 𝐶𝐶 𝑑𝑑𝑢𝑢𝐶𝐶

𝑑𝑑𝑑𝑑
.                                                  (3.2) 

 
Підставляючи значення струму i (3.2) у вираз (3.1), отримуємо диференціальне рівняння 

𝑅𝑅 ⋅ 𝐶𝐶 ⋅
𝑑𝑑𝑢𝑢𝐶𝐶
𝑑𝑑𝑑𝑑

+ 𝑢𝑢𝐶𝐶 = 𝑒𝑒. 
Підставляючи параметри R і C чотириполюсника рівняння (3.2) отримуємо шукане 

диференціальне рівняння елемента 
0,1 𝑑𝑑𝑢𝑢𝐶𝐶

𝑑𝑑𝑑𝑑
+ 𝑢𝑢𝐶𝐶 = 𝑒𝑒.                                            (3.3) 

Для знаходження перехідної функції елемента Вважаємо вхідний сигнал чотириполюсника 
рівним одиничному ступінчастому впливу e = 1(t). Тоді його вихідний сигнал дорівнюватиме 
перехідній функції 

uc = h(t). 
Відповідно до вхідного сигналу рівняння буде записано: 
 
0,1 𝑑𝑑ℎ(𝑡𝑡)

𝑑𝑑𝑑𝑑
+ ℎ(𝑡𝑡) = 1(t).                                      (3.4) 
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Вимушену складову перехідної функції знаходимо вважаючи у ньому похідну dh(t) /dt)= 0 
 
hв(t) = 1.       (3.5) 
Складаємо характеристичне рівняння, що відповідає диференційному рівнянню (3.5) 
0,1p + 1 = 0.  
Корінь характеристичного рівняння p=-10. 
Вільну складову перехідної функції знаходимо при n = 1 та p1 = -10 
ℎ𝑐𝑐(𝑡𝑡) = 𝐶𝐶1𝑒𝑒−10𝑡𝑡.                                           (3.6) 
Знаходимо перехідну функцію, підсумовуючи її вимушену (3.5) та вільну (6.6) складов 
h(t) = hв(t) + hс(t) = 1 + 𝐶𝐶1𝑒𝑒−10𝑡𝑡 .                              (3.7)  
З рівняння (3.7) за нульових початкових умов (h(0) = 0) визначаємо коефіцієнт 
C1 = -1. 
Підставляючи значення цього коефіцієнта вираз (3.7), знаходимо шукану перехідну функцію 

елемента 
ℎ(𝑡𝑡) = 1 − 𝑒𝑒−10𝑡𝑡 . 

Графік перехідної функції елемента наведено малюнку 3.3. 

 
 
Малюнок 3.3 – Графік перехідної функції елемента 
 
Для виведення передавальної функції елемента в диференціальному рівнянні (3.4) ступеня 

поліномів правої та лівої частин відповідно m = 0 та n = 1. Тоді коефіцієнти цього рівняння b0 = 1, 
a0 = 0,1, a1 = 1. 

При цих коефіцієнтах згідно з описом типових динамічних ланок знаходимо шукану функцію 
елемента. 

Оскільки передатна функція є зіставлення вихідний величини до вхідної, то з урахуванням 
перетворень Лапласа. рівняння (3.4) в операторній формі матиме вигляд 

0,1𝑢𝑢𝐶𝐶(𝑝𝑝) ⋅ 𝑝𝑝 + 𝑢𝑢𝐶𝐶(𝑝𝑝) = 𝑒𝑒(𝑝𝑝).                                    (3.8) 
 

𝑒𝑒(𝑝𝑝) = 𝑢𝑢𝐶𝐶(𝑝𝑝) ⋅ (0,1𝑝𝑝 + 1) 
 
𝑊𝑊(𝑝𝑝) = 𝑢𝑢𝐶𝐶(𝑝𝑝)

𝑒𝑒(𝑝𝑝)
= 1

0,1𝑝𝑝+1
.                                     (3.9) 

 
Для пошуку передавального коефіцієнта елемента слід врахувати, що якщо коефіцієнт a0 = 0 для 

передавальної функції 

𝑊𝑊(𝑝𝑝) =
𝑏𝑏0𝑝𝑝𝑚𝑚 + 𝑏𝑏1𝑝𝑝𝑚𝑚−1+. . . +𝑏𝑏𝑚𝑚
𝑎𝑎0𝑝𝑝𝑛𝑛 + 𝑎𝑎1𝑝𝑝𝑛𝑛−1+. . . +𝑎𝑎𝑛𝑛

, 

то передатна функція не має нульового полюса (p = 0), що характеризується її елемент й 
називають астатичним і передавальна функція цього елемента при p = 0 дорівнює передаточному 
коефіцієнту 
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𝐾𝐾 = 𝑊𝑊(0) =
𝑏𝑏𝑚𝑚
𝑎𝑎𝑛𝑛

. 

   
Тоді шуканий передаточний коефіцієнт елемента знаходимо для чотириполюсника при  
b0 = 1 і a1 = 1 

𝐾𝐾 =
1
1

= 1. 
Або з виразу (3.9) при p=0 

𝐾𝐾 = 𝑊𝑊(0) =
1

0 + 1
= 1. 

Визначимо частотні характеристики елемента. Амплітудно-фазову частотну характеристику 
(АФЧХ) елемента знаходимо шляхом підстановки в нього передавальної функції (3.9) при p = 𝑗𝑗𝑗𝑗 

 
𝑊𝑊(𝑗𝑗𝑗𝑗) = 1

0,1𝑗𝑗𝑗𝑗+1
= 1−0,1𝑗𝑗𝑗𝑗

1+(0,1𝜔𝜔)2
= 1

1+0,01𝜔𝜔2 − 𝑗𝑗 0,1𝜔𝜔
1+0,01𝜔𝜔2.       (3.10) 

Вид АФЧХ на комплексній площині наведено малюнку 3.4 

 
 
Малюнок 3.4 – АФЧХ чотирихолюсника 
 
З виразу (3.10) знаходимо дійсну та уявну частотні характеристики 
𝑃𝑃(𝜔𝜔) = 1

1+0,01𝜔𝜔2, 
 

𝑄𝑄(𝜔𝜔) = −
0,1𝜔𝜔

1 + 0,01𝜔𝜔2. 

Підставляючи значення цих характеристик, знаходимо шуканий вираз для амплітудної частотної 
характеристики, графік якої наведено на малюнку 3.6: 

 
𝐴𝐴(𝜔𝜔) = |𝑊𝑊(𝑗𝑗𝑗𝑗) =|�𝑃𝑃2(𝜔𝜔) + 𝑄𝑄2(𝜔𝜔) = 1

�1+0,01𝜔𝜔2. 

 

 
 
Малюнок 3.6 – АЧХ чотириполюсника 
       
Фазова частотна характеристика (рисунок 3.7) визначиться так 
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𝜙𝜙(𝜔𝜔) = 𝑎𝑎𝑎𝑎𝑎𝑎(𝑊𝑊(𝑗𝑗𝑗𝑗) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄(𝜔𝜔)
𝑃𝑃(𝜔𝜔)

= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(−0,1𝜔𝜔).                                                                   
 

 
 
Малюнок 3.7 – ФЧХ чотириполюсника 
 
 
 ОСОБЛИВОСТІ ПЕРЕТВОРЕННЯ СТРУКТУРНИХ СХЕМ САК 
 
Перетворення найпростіших САК 
 
Розглянемо найпростішу структурну схему (рисунок 3.8) 
 

 
 
Малюнок 3.8 – Початкова структурна схема САК 
 
Щоб звести схему малюнка 6.9 до виду елементарної ланки, необхідно виконати ряд перетворень: 

а) перетворення зустрічно-паралельного з'єднання ланок 1 та 2 з передатною функцією: 
𝑊𝑊𝐼𝐼(𝑝𝑝) = 𝑊𝑊1(𝑝𝑝)

1+𝑊𝑊1(𝑝𝑝)⋅𝑊𝑊2(𝑝𝑝); 
 
 б) послідовне з'єднання ланок (рисунок 3.9): 
 

 
 
Малюнок 3.9 - Схема проміжних перетворень 
 
𝑊𝑊ПОСЛ(𝑝𝑝) = 𝑊𝑊1(𝑝𝑝)

1+𝑊𝑊1(𝑝𝑝)⋅𝑊𝑊2(𝑝𝑝) ⋅ 𝑊𝑊3(𝑝𝑝) = 𝑊𝑊𝐼𝐼(𝑝𝑝) ⋅ 𝑊𝑊3(𝑝𝑝); 
 
 в): зустрічно-паралельне з'єднання ланок 
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𝑊𝑊ЗС(𝑝𝑝) = 𝑊𝑊ПОСЛ(𝑝𝑝)
1−𝑊𝑊4(𝑝𝑝)⋅𝑊𝑊ПОСЛ(𝑝𝑝) = 𝑊𝑊𝐼𝐼(𝑝𝑝)⋅𝑊𝑊3(𝑝𝑝)

1−𝑊𝑊4(𝑝𝑝)⋅𝑊𝑊𝐼𝐼(𝑝𝑝)⋅𝑊𝑊3(𝑝𝑝). 
 
Перетворення багатоконтурних САК 
 
 
Перетворити структурну схему САК (рисунок 3.10), що містить ланки з відомими передатними 

функціями, до схеми з однією еквівалентною ланкою. 
 
 

 
Малюнок 3.10 – Початкова структурна схема САК 
 
Відповідно до правил перетворення дану схему необхідно звести до елементарної ланки, 

виконавши ряд переносів вузлів підсумовування та точок розгалуження. 
Здійснимо перенесення суматора через ланку 1 назад ( малюнок 3.11) і отримаємо передатну 

функцію 
 
𝑊𝑊7(𝑝𝑝) = 1

𝑊𝑊2(𝑝𝑝)
. 

 

 
 
Малюнок 3.11– Перший крок перетворення схеми 
 
Далі виконаємо перестановку суматорів А та В (малюнок 3.12). 
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Малюнок 3.12 – Другий крок перетворення схеми 
 
Далі здійснимо заміну паралельного з'єднання ланок 2 і 4, отримавши передатну функцію 

(малюнок 3.13): 
 
𝑊𝑊8(𝑝𝑝) = 𝑊𝑊2(𝑝𝑝) + 𝑊𝑊4(𝑝𝑝). 
 

 
 
 Малюнок3.13– Третій крок перетворення схеми 
 
Виконаємо заміну послідовного з'єднання ланок 1 та 8, отримавши передатну функцію 

(малюнок3.14): 
 
𝑊𝑊9(𝑝𝑝) = 𝑊𝑊1(𝑝𝑝)𝑊𝑊8(𝑝𝑝). 
 

 
 
Малюнок  3.14– Четвертый шаг преобразования схемы 
 
Здійснимо заміну послідовного з'єднання ланок 6 і 7, вивівши передатну функцію (малюнок 3.15): 
𝑊𝑊10(𝑝𝑝) = 𝑊𝑊6(𝑝𝑝)𝑊𝑊7(𝑝𝑝). 
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Малюнок 3.15 – П'ятий крок перетворення схеми 
 
Далі зробимо заміну зустрічно-паралельного з'єднання ланок 5 і 9. Передаточна функція даного 

перетворення ( малюнок 3.16) набуде вигляду: 
𝑊𝑊11(𝑝𝑝) = 𝑊𝑊9(𝑝𝑝)

1+𝑊𝑊9(𝑝𝑝)𝑊𝑊5(𝑝𝑝)
. 

 

 
 
Малюнок 3.16– Шостий крок перетворення схеми 
 
Виконаємо заміну послідовного з'єднання ланок 3 та 11, що призведе до передавальної функції 

(малюнок 3.17): 
𝑊𝑊12(𝑝𝑝) = 𝑊𝑊3(𝑝𝑝)𝑊𝑊11(𝑝𝑝). 
 

 
 
Малюнок3.18 – Сьомий крок перетворення схеми 
 
Остаточним кроком перетворення буде виконано заміну зустрічно-паралельного з'єднання ланок 

10 і 12 з передавальною функцією виду (малюнок 3.19): 
𝑊𝑊13(𝑝𝑝) = 𝑊𝑊12(𝑝𝑝)

1+𝑊𝑊12(𝑝𝑝)𝑊𝑊10(𝑝𝑝)
. 

 

 
 
Малюнок 3.19 – Восьмий крок перетворення схеми 
 
Таким чином, вихідна структурна схема (малюнок 3.19 ) перетворена до однієї еквівалентної 

ланки. У разі, коли кожна з передавальних функцій представлена додатково відповідним виразом в 
операторній формі, для отримання кінцевої передавальної функції замкнутої системи необхідно 
виконати підстановку виразів і здійснити необхідні еквівалентні математичні перетворення. 
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ДОСЛІДЖЕННЯ САУ НА СТІЙКІСТЬ ЗА КРИТЕРІЄМ ГУРВІЦА 

 
Виконаємо дослідження САК, яка описується рівнянням третього порядку з однією змінною 

параметром К: 
𝑝𝑝3 + 3𝑝𝑝2 + 3𝑝𝑝 + К = 0. 

Скористаємося критерієм Гурвіца. Відповідно до нього повинні виконуватися умови, необхідні 
та достатні умови критерію Гурвіца 
𝑎𝑎0 = 1 >  0;

𝛥𝛥1 = 𝑎𝑎1 = 3 >  0;

𝛥𝛥2 = � 𝑎𝑎1  𝑎𝑎3 
 𝑎𝑎0  𝑎𝑎2

� = 𝑎𝑎1𝑎𝑎2 − 𝑎𝑎0𝑎𝑎3 = 3 ⋅ 3-1 ⋅ К  >  0;

𝛥𝛥3 = 𝑎𝑎3𝛥𝛥2 = 𝛼𝛼𝛥𝛥2  >  0. ⎭
⎪
⎪
⎬

⎪
⎪
⎫

        

                                                                        
Звідки область стійкості 
 

0 <  К  <  9. 
Визначимо так само, наприклад, область стійкості САК, що описується характеристичним 

рівнянням третього порядку з двома параметрами Т1 і К1 , що варіюються. 
 

𝑝𝑝3 + 3𝑝𝑝2 + 𝑇𝑇1𝑝𝑝 + 𝐾𝐾1 = 0.  
Скористаємося критерієм Гурвіца, згідно з яким повинні виконуватися необхідні та достатні 

умови 
 

𝑎𝑎0 = 1 > 0;

𝛥𝛥1 = 𝑎𝑎1 = 3 >  0;

𝛥𝛥2 = � 𝑎𝑎1  𝑎𝑎3 
 𝑎𝑎0  𝑎𝑎2

� = 𝑎𝑎1𝑎𝑎2 − 𝑎𝑎0𝑎𝑎3 = 3 ⋅ 𝑇𝑇1-1 ⋅ 𝐾𝐾1  >  0;

𝛥𝛥3 = 𝑎𝑎3𝛥𝛥2 = 𝛼𝛼𝛥𝛥2  >  0. ⎭
⎪
⎪
⎬

⎪
⎪
⎫

 

 
Звідки область стійкості 

0 <  𝐾𝐾1  <  3𝑇𝑇1. 
У графічному вигляді ця сфера стійкості представлена на малюнку 3.20. 

Т1 

1  ------ область нестійкості--------------. 

 
 

    область стійкості 

 

 
      3     К1 
Малюнок 3.20 – Область стійкості САУ у просторі двох параметрів 
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Для САУ, поданої на малюнку 3.21, виконати дослідження на стійкість за критерієм Гурвіца. Для 

САУ прийняті такі значення коефіцієнтів посилення та постійних часу 
: К1=2, К2=0,6, К3=10, К4=4, Т2=0,1 с, Т3=0,5 с. 
 

 
Малюнок 3.21 – Структурна схема досліджуваної САК 
 
Для визначення стійкості за критерієм Гурвіца знаходимо характеристичний поліном замкнутої 

системи  Q(p): 
 

𝑊𝑊ЗС(𝑝𝑝) =
𝑦𝑦(𝑝𝑝)
𝑥𝑥(𝑝𝑝)

=
𝑊𝑊ПР(𝑝𝑝)

1 + 𝑊𝑊ПР(𝑝𝑝)𝑊𝑊ОС(𝑝𝑝)
=

К1 ⋅
К2

Т2р + 1 ⋅
К3

Т3р + 1 ⋅
К4
р

1 + К1 ⋅
К2

Т2р + 1 ⋅
К3

Т3р + 1 ⋅
К4
р ⋅ 1

= 

 
= К1⋅К2⋅К3⋅К4

р(Т2р+1)(Т3р+1)+К1⋅К2⋅К3⋅К4
= КРАЗ

Т2Т3р3+(Т2+Т3)р2+р+КРАЗ
. 

 
 
Q(p) = T2T3p3 + (T2 + T3)p2 + p + KРАЗ. 
 
Оскільки досліджувана система третього порядку n=3, то визначення стійкості САК необхідно, 

щоб по-перше, все коефіцієнти мали той самий знак, як і перший коефіцієнт а0, а, по-друге, щоб 
головний визначник Гурвіца і його діагональні мінори теж мали той самий знак. У даному рівнянні 
коефіцієнти характеристичного рівняння Q(p) позитивні: 

 
a0 = T2 ⋅T3 = 0,1⋅ 0,5 = 0,05 > 0, 
 
a1 = T2 + T3 = 0,1+ 0,5 = 0,6 > 0 , 
 
a2 =1 > 0, 
 
a3 = K1 ⋅K2 ⋅K3 ⋅K4 = KРАЗ = 2 ⋅0,6⋅10⋅4 = 48 > 0. 
 
Таким чином, перша умова виконується. 
Запишемо і знайдемо головний визначник Гурвіца і всі його діагональні мінори. 
 

𝛥𝛥3 = �
а1 а3 0
а0 а2 0
0 а1 а3

� – головний визначник Гурвіца. 

 
𝛥𝛥1 = |а1| = |0,6| = 0,6 > 0. 
 

𝛥𝛥2 = �
а1 а3
а0 а2� = � 0,6 48

0,05 1 � = 0,6 ⋅ 1 − 0,05 ⋅ 48 = −1,8 < 0. 
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𝛥𝛥3 = �
а1 а3 0
а0 а2 0
0 а1 а3

� = �
0,6 48 0

0,05 1 0
0 0,6 48

� = а3 ⋅ 𝛥𝛥2 = 48 ⋅ (−1,8) = −86,4 < 0. 

Друга умова не виконується. Таким чином, САк, що розглядається, нестійка. 
Знайдемо значення коефіцієнта розімкнутої системи, у якому аналізована САК буде стійкою. 

Такий коефіцієнтназивається граничним коефіцієнтом посилення. Граничні параметри САК 
визначаються за умови знаходження її на межі стійкості, тобто Δi = 0. 

Тоді характеристичне рівняння набуде вигляду: 
 

Q(p) = T2T3p3 + (T2 + T3)p2 + p + KРАЗ = а0р3 + а1р2 + а2р + а3 == а0р3 + а1р2 + а2р + КПРЕД. 
 
З головного визначника Гурвіца та його другого діагонального мінору Δ2 (оскільки коефіцієнт а3 

= КПРЕД існує в ньому) визначимо чисельне значення КПРЕД: 

𝛥𝛥2 = �а1 𝐾𝐾ПРЕД
а0 а2

� = �
0,6 𝐾𝐾ПРЕД

0,05 1 � = 0,6 ⋅ 1 − 0,05 ⋅ 𝐾𝐾ПРЕД ≤ 0. 

 

𝐾𝐾ПРЕД =
−(0,6 ⋅ 1)
−0,5

= 12. 

Таким чином, щоби  САК була стійкою необхідно, щоб KРАЗ < 12 . 
Припустимо, що КРАЗ = а3 = 11 <12. 
𝛥𝛥1 = |а1| = |0,6| = 0,6 > 0. 
 

𝛥𝛥2 = �
а1 а3
а0 а2� = � 0,6 48

0,05 1 �11 = 0,6 ⋅ 1 − 0,05 ⋅ 11 = 0,05 > 0. 
 

𝛥𝛥3 = �
а1 а3 0
а0 а2 0
0 а1 а3

� = �
0,6 11 0

0,05 1 0
0 0,6 11

� = а3 ⋅ 𝛥𝛥2 = 11 ⋅ 0,05 = 0,55 > 0. 

 
Друга умова виконується, отже, САК є стійкою. 
Відомо, що стійкість САК залежить як від виду її характеристичного рівняння, так і від 

конкретних числових значень коефіцієнтів рівняння. Існують системи, які нестійкі до будь-яких 
значень параметрів. Такі системи називають структурно нестійкими. Структурно нестійку систему 
можна зробити стійкою лише змінивши її структуру. У структурно нестійкої системи у просторі 
будь-яких її параметрів області стійкості немає. Такою, наприклад, є САК, структурна схема якої 
наведена малюнку 3.22. У ній Т і k – відповідно постійна часу та передавальний коефіцієнт 
інерційної ланки. 

 

 
 
Малюнок 3.22 – Структурна схема структурно нестійкої САУ 
 
Характеристичне рівняння такої системи має вигляд 
 
За критерієм Гурвіца повинні виконуватись умови стійкості 
 

𝑇𝑇𝑝𝑝3 + 𝑝𝑝2 + 𝑘𝑘 = 0. 
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𝑎𝑎0 = 𝑇𝑇  > 0;
𝛥𝛥1 = 𝑎𝑎1 = 1 >  0;

𝛥𝛥2 = � 𝑎𝑎1  𝑎𝑎3 
 𝑎𝑎0  𝑎𝑎2

� = 𝑎𝑎1𝑎𝑎2 − 𝑎𝑎0𝑎𝑎3 = 1 ⋅ 0-𝑇𝑇 ⋅ 𝑘𝑘 = −𝑇𝑇 ⋅ 𝑘𝑘 >  0;

𝛥𝛥3 = 𝑎𝑎3𝛥𝛥2 = 𝑘𝑘𝛥𝛥2  >  0. ⎭
⎪
⎬

⎪
⎫

 

 
Однак за жодних значень постійної часу Т і передатного коефіцієнта k визначник 𝛥𝛥2 не може бути 

позитивним. Тому система, що розглядається, є структурно нестійкою. 
Існують загальні рекомендації щодо впливу на структурну стійкість одноконтурної ТАК: 
а) ланки, що зменшують інерційність системи, сприяють її стійкості (наприклад, ланка першого 

порядку, що форсує); 
б) ланки, що збільшують інерційність системи, сприяють її нестійкості (наприклад, ідеальні 

інтегруючі та коливальні ланки). 
Розглянемо вплив однієї з основних параметрів одноконтурної САУ (рисунок 6.23) – 

передавального коефіцієнта розімкнутої ТАК її стійкість. 

 
 
Малюнок 3.23 – Узагальнена алгоритмічна схема 
 
Чим цей коефіцієнт більший, тим більш різко змінюються сигнали й впливу у системі,тобто . її 

вільний рух відбувається з більшою частотою. Наслідком цього є більше запізнення фазою сигналу 
зворотного зв'язку (керованої величини) по відношенню до сигналу помилки.  При певному 
передатному коефіцієнті зворотний зв'язок починає працювати як позитивний і призводить до 
розгойдування системи, т. е. до нестійкості системи. 

Таким чином, встановлена загальна закономірність: чим більший передавальний коефіцієнт 
розімкнутої САК, тим ближче замкнута САК до межі стійкості. 

Граничне значення передавального коефіцієнта розімкнутої САК залежить від співвідношення 
постійних часу ланок, що утворюють контур системи. Розглянемо, наприклад, статичну САК, що 
складається з трьох інерційних ланок першого порядку з передатними коефіцієнтами k1, k2, k3 та 
постійними часу Т1, Т2, Т3, алгоритмічна схема якої наведена на малюнку 3.24. 

 

 
Малюнок 3.24 – Структурна схема одноконтурної статичної САК 
 
Передатна функція розімкнутої САК, коли зворотний зв'язок розімкнута, матиме вигляд: 
 

𝑊𝑊(𝑝𝑝) =
𝑘𝑘1𝑘𝑘2𝑘𝑘3

(𝑇𝑇1𝑝𝑝 + 1) (𝑇𝑇2𝑝𝑝 + 1) (𝑇𝑇3𝑝𝑝 + 1) =
𝑘𝑘

(𝑇𝑇1𝑝𝑝 + 1) (𝑇𝑇2𝑝𝑝 + 1) (𝑇𝑇3𝑝𝑝 + 1), 

 
де k - передавальний коефіцієнт розімкнутої системи. 
Характеристичне рівняння замкнутої системи – знаменник передавальної функції: 
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(𝑇𝑇1𝑝𝑝 + 1) (𝑇𝑇2𝑝𝑝 + 1) (𝑇𝑇3𝑝𝑝 + 1) + 𝑘𝑘 = 0 
 
або 

𝑎𝑎0𝑝𝑝3 + 𝑎𝑎1𝑝𝑝2 + 𝑎𝑎2𝑝𝑝 + 𝑎𝑎3 = 0, 
 
де  𝑎𝑎 0 = 𝑇𝑇1𝑇𝑇2𝑇𝑇3;         
𝑎𝑎1 = 𝑇𝑇1𝑇𝑇2 + 𝑇𝑇1𝑇𝑇3 + 𝑇𝑇2𝑇𝑇3;       
𝑎𝑎2 = 𝑇𝑇1 + 𝑇𝑇2 + 𝑇𝑇3;             
 𝑎𝑎3 = 1 + 𝑘𝑘.                            
Згідно з критерієм Гурвіца система третього порядку буде перебувати на межі стійкості при 
𝛥𝛥2 = 𝑎𝑎1𝑎𝑎2 − 𝑎𝑎0𝑎𝑎3 = 0.                                                                                                                    
 
Підставляючи у попередній вираз загальні значення коефіцієнтів a0, а1, а2, а3, отримуємо 
 

(𝑇𝑇1𝑇𝑇2 + 𝑇𝑇1𝑇𝑇3 + 𝑇𝑇2𝑇𝑇3) (𝑇𝑇1 + 𝑇𝑇2 + 𝑇𝑇3) − 𝑇𝑇1𝑇𝑇2𝑇𝑇3�1 + 𝑘𝑘пр� = 0. 
Вирішуючи це рівняння, отримуємо потрібне значення граничного коефіцієнта  
 
𝑘𝑘пр = 2 + 𝑇𝑇1

𝑇𝑇2
+ 𝑇𝑇1

𝑇𝑇3
+ 𝑇𝑇2

𝑇𝑇1
+ 𝑇𝑇2

𝑇𝑇3
+ 𝑇𝑇3

𝑇𝑇1
+ 𝑇𝑇3

𝑇𝑇2
.            

 
Аналіз даної залежності дозволяє говорити, що граничний коефіцієнт тим більше, чим більше 

різницю між двома постійними часу, що найбільш розрізняються (наприклад, Т1 і Т2) і чим ближче 
третя постійна часу (Т3) до середньоарифметичного значення двох перших.  

 
 
ДОСЛІДЖЕННЯ САУ НА СТІЙКІСТЬ ЗА КРИТЕРІЄМ МИХАЙЛОВА 
 
Визначити стійкість системи за критерієм Михайлова, структурна схема якої представлена 

малюнку 3.25. 
. 
 

 
 
Малюнок 3.25 – Структурна схема досліджуваної САУ 
 
Записуємо передатну функцію замкнутої системи та знаходимо її характеристичний поліном 

Q(p): 

𝑊𝑊ЗС(𝑝𝑝) =
𝑦𝑦(𝑝𝑝)
𝑥𝑥(𝑝𝑝)

=
𝑊𝑊ПР(р)

1 +  𝑊𝑊ПР(р) ⋅ 𝑊𝑊ОС(р)
=

29
0,01р + 1 ⋅

2
0,57р + 1 ⋅

1
р

1 + 29
0,01р + 1 ⋅

2
0,57р + 1 ⋅

1
р ⋅ 1

= 

 
= 29⋅2⋅1

𝑝𝑝+(0,01р+1)⋅(0,57р+1)+29⋅2⋅1
= 58

0,0057𝑝𝑝3+0,58𝑝𝑝2+𝑝𝑝+58
. 

 
Q(p) = 0,0057 ⋅ р3 + 0,58р2 + р + 58 = 0. 
 
Замінюємо в характеристичний поліном оператор диференціювання р на jω 
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Q(jω)= 0,0057 ⋅(jω)3 + 0,58(jω)2 + (jω)+ 58 = 0. 
 
j = −1 , j2 = −1, j3 = − j, j4 =1 и 
 
Q(jω)= −0,0057 ⋅ jω3 − 0,58⋅ ω2 + jω + 58 = 0. 
 
Виділяємо дійсну частину U(ω) і уявну частину V(ω), прирівнюємо їх до нуля. 
 
U(ω) = −0,58⋅ ω2 + 58 = 0, 
 
jV(ω) = −0,0057 ⋅ ω3 + ω = 0. 
 
Знаходимо коріння рівнянь, які є частотами перетину годографа Михайлова з дійсною та уявною 

осями: 
 
U(ω) = −0,58⋅ ω2 + 58 = 0, 
 
jV(ω) = −0,0057 ⋅ ω3 + ω = 0, 
 
− 0,58⋅ ω2 = −58 ω(− 0,0057⋅ ω2 +1)= 0, 
 

𝜔𝜔 = � 58
0,58

= 10 рад/𝑐𝑐, 

 
ω = 0 рад/c, 
 
-0,0057∙ ω2 = -1, 
 

𝜔𝜔 = � 1
0,0057

= 13, 2 рад/𝑐𝑐. 

 
 
Щоб дізнатися стійка замкнута система без побудови годографа Михайлова необхідно, щоб 

виконувалася умова чергування частот, тобто: ω0 < ω1 < ω2 < ω3 < ω4 < ω5… 
Так як годограф завжди починається на позитивній речовинної осі при ω = 0 (перший найменший 

корінь уявної частини при V(ω0) = 0), то при поступовому збільшенні частоти від нуля до 
нескінченності повинна звертатися в нуль спочатку речовинна частина U(ω) = 0 (перший 
найменший корінь речовинної частини при U(ω) коріння, що залишилося, корінь уявної частини 
при V(ω2) = 0), потім знову речовинна частина (найменший з коренів, що залишилися, корінь 
речовинної частини при U(ω3) = 0) і так далі. 

У цьому випадку розподілимо коріння у порядку: 
ω0 = 0 (при V(ω0) = 0), 
 
ω1 =10 рад/с (при U(ω) = 0), 
 
ω2=13,2 рад/с (при V(ω0) = 0). 
 
Таким чином, умова ω0 < ω1 < ω2 виконується. Значить замкнута CАК стійка. 
На підтвердження розрахунків збудуємо годограф Михайлова (малюнок 3.26). 
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Знайдемо значення дійсної U(ω) і уявної частин V(ω) для частот ω = 0 ÷ 15 рад/с (оскільки 
найбільша частота перетину годографа з віссю координат дорівнює ω2=13,2 рад/с). 

Розраховані вище значення частот перетину годографа з дійсною і уявною осями виділені в 
таблиці жирно. 

 
Таблиця  Розрахункові параметри для побудови годографаМихайлова 
 

 
 
За результатами таблиці збудуємо годограф Михайлова. 
З малюнка 3.26 видно, що замкнута САК стійка, так як характеристичне рівняння третього 

порядку та крива годографа, починається на позитивній дійсній півосі і огинає проти годинникової 
стрілки початок координат, проходячи послідовно три квадранти. 

 

 
Малюнок 3.26 – Годограф Михайлова  
 
 
ДОСЛІДЖЕННЯ САК НА СТІЙКІСТЬ ЗА КРИТЕРІЄМ НАЙКВІСТА 
 
 
Визначити стійкість електромеханічної системи, труктурна схема якої представлена малюнку 

3.27, використовуючи критерій стійкості Найквіста 
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Малюнок 3.27 – Початкова структурна схема САУ 
 
Для цієї системи отримаємо передатну функцію розімкнутої системи: 
 

𝑊𝑊РАЗ(𝑝𝑝) = 𝑊𝑊П(𝑝𝑝) ⋅ 𝑊𝑊ОС(𝑝𝑝) =
20

0,1р + 1
⋅

5
0,02р + 1

⋅
1
р
⋅ 1 =

100
р(0,1р + 1)(0,02р + 1)

. 

 
З передавальної функції видно, що все корені знаменника, крім одного нульового кореня, лежить 

у лівій напівплощині. Тому в стійкій системі амплітудно-фазова характеристика (АФХ) не повинна 
охоплювати точку (-1, j0). Для визначення АФХ розімкнутої системи визначимо амплітудну 
частотну характеристику A(ω) = WРАЗ(jω) та фазову частотну характеристику ϕ(ω) = arg|Wраз(jω)|. 

Щоб отримати передатну частотну функцію W(jω), необхідно замінити оператор 
диференціювання р на jω: 

𝑊𝑊РАЗ(𝑗𝑗𝑗𝑗) =
100

𝑗𝑗𝑗𝑗(0,1𝑗𝑗𝑗𝑗 + 1)(0,02𝑗𝑗𝑗𝑗 + 1)
. 

Розкриваємо дужки у знаменнику та виконуємо тотожні перетворення: 

𝑊𝑊РАЗ(𝑗𝑗𝑗𝑗) =
100

0,002(𝑗𝑗𝑗𝑗)3 + 0,12(𝑗𝑗𝑗𝑗)2 + 𝑗𝑗𝑗𝑗
=

100
−𝑗𝑗0,002𝜔𝜔3 − 0,12𝜔𝜔2 + 𝑗𝑗𝑗𝑗

. 

 
Групуємо складові в знаменнику з уявною одиницею j: 
 

𝑊𝑊РАЗ(𝑗𝑗𝑗𝑗) =
100

−𝑗𝑗0,002𝜔𝜔3 − 0,12𝜔𝜔2 + 𝑗𝑗𝑗𝑗
=

100
−0,12𝜔𝜔2 + 𝑗𝑗(𝜔𝜔 − 0,002𝜔𝜔3)

=
100
𝛼𝛼 ± 𝑗𝑗𝑗𝑗

. 

 
Помножимо чисельник і знаменник частотної передавальної функції комплексне пов'язане число 

знаменника, тобто. для − α + jβкомплексне сполучене число буде − α − jβ . 
 

𝑊𝑊РАЗ(𝑗𝑗𝑗𝑗) =
100

−0,12𝜔𝜔2 + 𝑗𝑗(𝜔𝜔 − 0,002𝜔𝜔3)
⋅
−0,12𝜔𝜔2 − 𝑗𝑗(𝜔𝜔 − 0,002𝜔𝜔3)
−0,12𝜔𝜔2 − 𝑗𝑗(𝜔𝜔 − 0,002𝜔𝜔3)

= 

 

=
−12𝜔𝜔2 − 𝑗𝑗100(𝜔𝜔 − 0,002𝜔𝜔3)

(−0,12𝜔𝜔2)2 − (𝑗𝑗(𝜔𝜔 − 0,002𝜔𝜔3))2 =
−12𝜔𝜔2 − 𝑗𝑗100(𝜔𝜔 − 0,002𝜔𝜔3)
0,0144𝜔𝜔4 + (𝜔𝜔 − 0,002𝜔𝜔3)2

. 

 
Виділимо окремо дійсну U(ω) та уявну частини V(ω)частотної передавальної функції: 
 
𝑈𝑈(𝜔𝜔) = −12𝜔𝜔2

0,0144𝜔𝜔4+(𝜔𝜔−0,002𝜔𝜔3)2
, 

 
𝑉𝑉(𝜔𝜔) = 𝑗𝑗 −100(𝜔𝜔−0,002𝜔𝜔3)

0,0144𝜔𝜔4+(𝜔𝜔−0,002𝜔𝜔3)2
. 

Записуємо вираз визначення амплітудної частотної характеристики: 
 
𝐴𝐴(𝜔𝜔) = �𝑈𝑈2(𝜔𝜔) + 𝑉𝑉2(𝜔𝜔), 
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𝐴𝐴(𝜔𝜔) = �� −12𝜔𝜔2

0,0144𝜔𝜔4+(𝜔𝜔−0,002𝜔𝜔3)2
�
2

+ �𝑗𝑗 −100(𝜔𝜔−0,002𝜔𝜔3)
0,0144𝜔𝜔4+(𝜔𝜔−0,002𝜔𝜔3)2

�
2
. 

 
Фазова частотна характеристика розімкнутої системи записується як сума фазових характеристик 

типових ланок, у тому числі вона складається. Структурна схема малюнка 3.27 включає дві 
аперіодичні ланки першого порядку та одну інтегруючу. 

Фазові частотні характеристики: 
а) для аперіодичного ланки першого порядку A1(jω)= −arctg(ωT); 
б) для інтегруючої ланки ϕ(jω)= - π/2. 
З урахуванням цього, записуємо вираз для фазової характеристики системи, що розглядається: 
ϕРАЗ (jω)= −90o − arctg0,1ω − arctg0,02ω. 
Фазова частотна характеристика розімкнутої системи записується як сума фазових характеристик 

типових ланок, у тому числі вона складається. Структурна схема малюнка 3.27 включає два 
аперіодичні ланки першого порядку та одну інтегруючу. 

Фазові частотні характеристики: 
а) для аперіодичного зв'язку першого порядку A1(jω)= −arctg(ωT); 
б) для інтегруючої ланки ϕ(jω)= - π/2. 
З урахуванням цього, записуємо вираз для фазової характеристики системи, що розглядається: 
 
Таблиця. Фазові характеристики 

 
За даними таблиці будуємо АФХ розімкнутої системи (рисунок 3.28). Так як знаменник 

передавальної функції системи має нульовий корінь, то розглянута слідча система є астатич-ної 
першого порядку. Отже, доповнимо дугою кола нескінченно великого радіусу гілка АФХ, що 
відповідає частоті при ω = 0, яка йде в нескінченність так, щоб вектор WРАЗ(jω) повернувся за 
годинниковою стрілкою на кут, рівний 90о. 

З малюнка 3.28 видно, що АФХ розімкнутої системи охоплює точку (-1, j0). 
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Малюнок 3.28 – АФХ розімкнутої САУ 
 
Отже, замкнута система нестійка. 
Перевіримо справедливість цього твердження будь-яким із відомих критеріїв, наприклад, 

алгебраїчним критерієм Гурвіца. 
Запишемо за структурною схемою передатну функцію замкнутої системи: 

𝑊𝑊ЗС(𝑝𝑝) =
𝑦𝑦(𝑝𝑝)
𝑥𝑥(𝑝𝑝)

=
𝑊𝑊ПР(𝑝𝑝)

1 + 𝑊𝑊ПР(𝑝𝑝)𝑊𝑊ОС(𝑝𝑝)
=

20
0,1р + 1 ⋅

5
0,02р + 1 ⋅

1
р

1 + 2
0,1р + 1 ⋅

5
0,02р + 1 ⋅

1
р ⋅ 1

= 

 

=

100
𝑝𝑝(0,1р + 1)(0,02р + 1)

1 + 20
0,1р + 1 ⋅

5
0,02р + 1 ⋅

1
р

=

100
𝑝𝑝(0,1р + 1)(0,02р + 1)

𝑝𝑝(0,1р + 1)(0,02р + 1) + 100
𝑝𝑝(0,1р + 1)(0,02р + 1)1

= 

 
= 100

𝑝𝑝(0,1р+1)(0,02р+1)=100
= 100

0,002р3+0,02р2+𝑝𝑝+100
. 

Характеристичний поліном замкнутої системи Q(p) дорівнює: 
Q(p) = 0,002р3 + 0,02р2 + 𝑝𝑝 + 100 = 𝑎𝑎0𝑝𝑝3 + 𝑎𝑎1𝑝𝑝2 + 𝑎𝑎2𝑝𝑝 + 𝑎𝑎3. 
 
Оскільки досліджувана система третього порядку n=3, то визначення стійкості САУ необхідно, 

щоб по-перше, все коефіцієнти мали той самий знак, як і перший коефіцієнт а0. І, по-друге, щоб 
головний визначник Гурвіца та всі його діагональні мінори теж 

мали той самий знак. 
У цьому рівнянні коефіцієнти характеристичного рівняння Q(p) позитивні: a0 = 0,002 > 0, a1 = 

0,12 > 0, a2 = 1 > 0, a3 = 100 > 0 . 
Таким чином, перша умова виконується. 
Для перевірки другої умови, достатньо врахувати умову позитивності лише передостаннього 

мінору Δ2 > 0, оскільки аналізоване характеристичне рівняння Q(p) є окремим випадком при 
розкритті визначника, що фігурує у загальному формулюванні критерію Гурвіца.  

Запишемо і знайдемо другий діагональний мінор Гурвіца: 
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.008,0002,0100112,011
1002,0

10012,0
аа
аа

20

31
2 <−=⋅−⋅===∆

 
 
Друга умова не виконується. Таким чином, замкнута САК нестійка.  
Таким чином, підтверджується правильність зробленого вище висновку. 
 
 КОРЕНЕВИЙ МЕТОД ДОСЛІДЖЕННЯ САК НА СТІЙКІСТЬ 
 
Розглянемо деяку замкнуту САУ, властивості якої описуються характерним поліномом: 
 
Q(p) = p3 – p2 + 3p + 5. 
 
 Визначити по корінням характеристичного полінома чи стійка САУ, якщо відомо, що один з 

коренів рамен р1 = -1. Побудувати коріння на комплексній площині.  
Для визначення стійкості САК необхідно визначити значення двох інших коренів 

характеристичного полінома. І тому задане рівняння потрібно розділити на (р – р1).  
 

 
Вирішуючи отримане квадратне рівняння p2 – 2p + 5 = 0, отримуємо, що коріння рівняння 

наступне: 
p2 = 1– j2, 
 
p3 = 1+ j2. 
 
Так як коріння має позитивну дійсну частину, то за іншою теоремою Ляпунова система буде 

нестійкою, а розташування коренів на комплексній площині наведено на малюнку 3.29. 
 

 
 
Малюнок 3.29 – Розташування коріння на комплексній площині 
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АНАЛІТИЧНЕ ВИЗНАЧЕННЯ ПЕРЕХІДНИХ ПРОЦЕСІВ ТА ПОКАЗНИКІВ ЯКОСТІ У 

САК  
 

Передана функція САК у розімкнутому стані 
𝑊𝑊(𝑝𝑝) = 50

𝑝𝑝(0,05𝑝𝑝+1)
. 

 
Аналітично визначити перехідну функцію h(t) та вагову функцію w(t). Побудувати графіки 

перехідних процесів, характер яких оцінити стійкість САК. Визначити тривалість перехідного 
процесу h(t) при входженні в зону 5% від значення для монотонного перехідного процесу (2,5% 
для коливального іаперіодичного перехідного процесу) і величину перерегулювання. Для вагової 
функції w(t) визначити лише максимальне значення.  

Спочатку визначимо передатну функцію замкнутої системи: 
 

𝑊𝑊ЗС(𝑝𝑝) =
𝑊𝑊(𝑝𝑝)

1 + 𝑊𝑊(𝑝𝑝)
=

50
𝑝𝑝(0,05𝑝𝑝 + 1)

1 + 50
𝑝𝑝(0,05𝑝𝑝 + 1)

=
50

0,05р2 + р + 50
. 

 
 Перехідна функція у просторі Лапласа визначається: 
 
𝐻𝐻(𝑝𝑝) = 𝑊𝑊ЗС(р)

р
= 50

0,05р3+р2+50р
. 

 
 Щоб знайти h(t), необхідно знайти зворотне перетворення Лапласа від Н(р), використовуючи 

властивості і таблицю типових перетворень. Виконаємо розкладання знаменника – 
характеристичного полінома на співмножники. Бажано виконати розкладання так, щоб отримати 
поліном стандартного вигляду. Прирівняємо знаменник до нуля і визначимо його коріння: 

 
0,05p3 + p2 + 50p = р(0,05p2 + p + 50) = 0, 
 
р1 = 0,  р2,3 = -10 ± j30. 
 
 За наявності комплексно-сполученого коріння поліномів необхідно їх привести до вигляду 

(р+α)2 + β2, тобто: 
 
0,05p3 + p2 + 50p = 0,05(p – p2)(p – p3) = 0,05(р + 10 – j30)(р + 10 + j30) = 
 
= 0,05((р + 10) – j30)((р + 10) + j30) = 0,05((р + 10)2 – (j30)2) =  
 
= 0,05((р + 10)2 – (30)2) . 
 
 Тогда Н(р) приобретает вид: 
 
𝐻𝐻(𝑝𝑝) = 50

0,05((р+10)2+30р2)
. 

 Отримане зображення перехідної функції є раціональним дробом, оригінал для якого не є 
типовим, тому такий дріб потрібно подати у вигляді суми простих раціональних дробів з 
невизначеними коефіцієнтами, які мають як оригінали поширені в ТАК функції часу. Розкладемо 
Н(р) на складові: 
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𝐻𝐻(𝑝𝑝) =
50

0,05((р + 10)2 + 30р2)
=

1000
𝑝𝑝((𝑝𝑝 + 10)2 + 302)

=
𝐴𝐴1
𝑝𝑝

+
𝐴𝐴2𝑝𝑝 + 𝐴𝐴3

(𝑝𝑝 + 10)2 + 302
= 

 
= 𝐴𝐴1((𝑝𝑝+10)2+302)+𝐴𝐴2𝑝𝑝2+𝐴𝐴3𝑝𝑝

𝑝𝑝((𝑝𝑝+10)2+302)
= 𝐴𝐴1𝑝𝑝2+𝐴𝐴2𝑝𝑝2+20𝐴𝐴1𝑝𝑝+𝐴𝐴3𝑝𝑝+1000𝐴𝐴1

𝑝𝑝((𝑝𝑝+10)2+302)
. 

 
 Визначимо невідомі параметри А1, А2, А3, А4, використовуючи коефіцієнти чисельника при 

ступенях оператора р: 
р2 → А1 + А2 = 0, 
 
р1 → 20А1 + А3 = 0, А1 = 1, А2 = - 1, А3 = -20, 
 
р0 → 1000А1 = 1000. 
 
 Н(р), разложенная на простые дроби приобретает вид: 
 
𝐻𝐻(𝑝𝑝) = 1

𝑝𝑝
− 𝑝𝑝+20

(𝑝𝑝+10)2+302
. 

 
 Згідно з типовими перетвореннями Лапласа, оригінал h(t) знайдемо таким чином: 

ℎ(𝑡𝑡) = 𝐿𝐿−1{𝐻𝐻(𝑝𝑝)} = 𝐿𝐿−1 �
1
𝑝𝑝
−

𝑝𝑝 + 20
(𝑝𝑝 + 10)2 + 302

� = 𝐿𝐿−1 �
1
𝑝𝑝
� − 𝐿𝐿−1 �

𝑝𝑝 + 20
(𝑝𝑝 + 10)2 + 302

� = 

 

= 𝐿𝐿−1 �
1
𝑝𝑝
� − 𝐿𝐿−1 �

𝑝𝑝 + 10 + 10
(𝑝𝑝 + 10)2 + 302

� = 𝐿𝐿−1 �
1
𝑝𝑝
� − 𝐿𝐿−1 �

𝑝𝑝 + 10
(𝑝𝑝 + 10)2 + 302

� − 

 

−𝐿𝐿−1 �
10

(𝑝𝑝 + 10)2 + 302
� = 𝐿𝐿−1 �

1
𝑝𝑝
� − 𝐿𝐿−1 �

𝑝𝑝 + 10
(𝑝𝑝 + 10)2 + 302

� − 

−10
30
30

𝐿𝐿−1 �
1

(𝑝𝑝 + 10)2 + 302
� = 𝐿𝐿−1 �

1
𝑝𝑝
� − 𝐿𝐿−1 �

𝑝𝑝 + 10
(𝑝𝑝 + 10)2 + 302

� − 

−1
3
𝐿𝐿−1 � 30

(𝑝𝑝+10)2+302
� = 1 − 𝑒𝑒−10𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐( 30𝑡𝑡) − 1

3
𝑒𝑒−10𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠( 30𝑡𝑡). 

 
 Побудуємо графік перехідного процесу h(t) при реакції САК (рисунок 3.30) на одиничний 

ступінчастий вплив, попередньо визначивши кілька точок перехідної функції (таблиця). 
 
Таблиця - Точки перехідної функції 
  

t 0,025 0,05 0,075 0,1 0,125 0,15 0,175 0,2 0,225 
h(t) 0,253 0,775 1,174 1,347 1,29 1,12 0,961 0,883 0,89 

t 0,25 0,275 0,3 0,325 0,35 0,375 0,4 0,425 0,45 
h(t) 0,946 1,005 1,039 1,041 1,023 1,002 0,988 0,985 0,99 
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Малюнок 3.30 – Графік перехідної функції  
 
За видом перехідного процесу (рисунок 3.30) можна зробити висновок, що перехідний процес 

при реакції САК на одиничний ступінчастий вплив буде коливальним.  
Визначимо час перехідного процесу: 
 
tp = 0,348 c. 
 
Перерегулювання визначимо, встановивши максимальне значення: 
σ = ((hmax – hуст)/ hуст)∙100% = ((1,35 – 1)/1)∙100% = 35%. 
 
 Для визначення вагової функції w(t) необхідно здійснити зворотне перетворення Лапласа для 

передавальної функції WЗС(р) 
 

𝑤𝑤(𝑡𝑡) = 𝐿𝐿−1{𝑊𝑊ЗС(𝑝𝑝)} = 𝐿𝐿−1 �
50

0,05р2 + р + 50
� = 𝐿𝐿−1 �

50
0,05((𝑝𝑝 + 10)2 + 302)

� = 

= 1000𝐿𝐿−1 �
1

(𝑝𝑝 + 10)2 + 302
� =

1000
30

𝐿𝐿−1 �
30

(𝑝𝑝 + 10)2 + 302
� = 33, (3)е−10𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠( 30𝑡𝑡). 

 
 Побудуємо графік перехідного процесу w(t) (рисунок 3.31) за реакції САУ на імпульс δ(t), 

попередньо обчисливши кілька точок перехідної функції (таблиця). 
 
 Таблиця - Точки вагової функції 
 

t 0,025 0,05 0,075 0,1 0,125 0,15 0,175 0,2 0,225 
w(t) 17,7 20,17 12,25 1,73 -5,46 -7,27 -4,98 -1,26 1,58 

t 0,25 0,275 0,3 0,325 0,35 0,375 0,4 0,425 0,45 
w(t) 2,57 1,97 0,68 -0,41 -0,89 -0,76 -0,33 0,09 0,3 
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Рисунок 6.31 – Графік вагової функції  
 
 
ВИЗНАЧЕННЯ ПОКАЗНИКІВ ЯКОСТІ САУ КОРЕНЕВИМ МЕТОДОМ  
 
Для структурної схеми САУ (рисунок 3.32) визначити:  
а) передавальну функцію САУ;  
б) коефіцієнти а та b такі, щоб перехідний процес тривав не більше 0,3 с (tp = 0,3 c) при значенні 

ступеня коливання μ = 1,3;  
в) коефіцієнти а та b такі, щоб перехідний процес тривав не більше 0,3 с при значенні коефіцієнта 

згасання ξ = 0,707 та точності δ = 0,04. 
 

 
 
Малюнок 3.32 – Структурна схема САК  
 
Для того, щоб знайти передатну функцію САУ за структурною схемою малюнка 3.32, необхідно 

її перетворення згідно з відомими правилами перенесення вузлів підсумовування та точок 
розгалуження (рисунок 3.33). 
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Малюнок 3.33 – Перетворення структурної схеми  
 
Передатна функція САК може бути визначена після перетворення структурної схеми малюнка 

3.33 з урахуванням паралельної, послідовної та зустрічно-паралельної сполуки: 

𝑊𝑊(𝑝𝑝) = 𝑦𝑦(𝑝𝑝)
𝑥𝑥(𝑝𝑝)

=
𝑎𝑎

𝑝𝑝+1

1+ 𝑎𝑎
𝑝𝑝+1⋅�𝑏𝑏+

1
𝑝𝑝�
⋅ 1
𝑝𝑝

=
𝑎𝑎

𝑝𝑝+1

1+ 𝑎𝑎
𝑝𝑝+1⋅

𝑏𝑏𝑏𝑏+1
𝑝𝑝

⋅ 1
р

=
𝑎𝑎

𝑝𝑝+1

𝑝𝑝+𝑎𝑎(𝑏𝑏𝑏𝑏+1)
𝑝𝑝+1

, 

 
𝑊𝑊(𝑝𝑝) = 𝑎𝑎

𝑝𝑝2+(𝑎𝑎𝑎𝑎+1)𝑝𝑝+𝑎𝑎
. 

 
Таким чином, характеристичне рівняння САУ: 
 
𝑄𝑄(𝑝𝑝) = 𝑝𝑝2 + (𝑎𝑎𝑎𝑎 + 1)𝑝𝑝 + 𝑎𝑎. 
 
Визначимо значення невідомих коефіцієнтів при tp = 0,3 c та μ = 1,3. Відповідно до теоретичних 

відомостей, очевидно, що характеристичне рівняння Q(p) другого порядку та його можна привести 
до загального вигляду: 

 
Q(p) = T2p2 + 2ξTp + 1, 
 
де ξ - Коефіцієнт демпфування (загасання).  
Для того, щоб САК другого порядку була коливальною (μ = 1,3) коріння рівняння Q(p) = T2p2 + 

2ξTp + 1 повинні бути комплексними виду р1,2 = -α ± jβ при тому, що β/α = 1,3. Ступінь стійкості 
η = α визначимо з верхньої межі тривалості перехідного процесу: 

𝑡𝑡𝑝𝑝 =
1
𝜂𝜂
𝑙𝑙𝑙𝑙

1
𝛿𝛿

 

звідки 

 𝛼𝛼 = 𝜂𝜂 =
𝑙𝑙𝑙𝑙 1
𝛿𝛿

𝑡𝑡𝑝𝑝
=
𝑙𝑙𝑙𝑙 1

0,04
0,3

=
𝑙𝑙𝑙𝑙 2 5

0,3
≈ 10,73, 

 
β = 1,3α = 13,95, р1,2 = -10,73 ± j13,95. 

 
 Визначимо коефіцієнти структурної схеми САК а та b, представивши вихідний 

характеристичний поліном 𝑄𝑄(𝑝𝑝) = 𝑝𝑝2 + (𝑎𝑎𝑎𝑎 + 1)𝑝𝑝 + 𝑎𝑎:   в вигляді 
 

(р - р1) (р - р2) = (р + 10,73 - j13,95) (р + 10,73 + j13,95) = ((р + 10,73) - j13,95) ((р + 10,73) + j13,95) 
= (р + 10,73) 2 + 13,952 == р2+21,46р+309,74.  
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Звідки отримуємо: 
 
а = 309,74, 
 
b = (21,46 - 1) / 309,74 = 20,46 / 309,74 = 0,066.  
 
Загасання амплітуди за період складе: 
 

𝜁𝜁 = 1 − 𝑒𝑒−
2𝜋𝜋
𝜇𝜇 = 1 − 𝑒𝑒−

2𝜋𝜋
1,3 = 0,992 або  99,2%. 

 
Якщо ж із показників САК відомий час регулювання tp = 0,3 c і точність δ = 0,04, то за наведеними 

раніше залежностями можна визначити дійсну частину комплексних коренів α = η = 10,73. 
Рівняння Q(p) = T2p2 + 2ξTp + 1 буде відповідати аперіодичному перехідному процесу, якщо ξ = 
0,707 (μ = 1, δ = 4,3%). Тоді характеристичний поліном Q(p) буде записано: 

 
𝑄𝑄(𝑝𝑝) = 𝑇𝑇2𝑝𝑝2 + √2𝑇𝑇𝑇𝑇 + 1 = 0, 
 
а корені рівняння 
 

𝑝𝑝1,2 = −√2𝑇𝑇±√2𝑇𝑇2−4𝑇𝑇2

2𝑇𝑇2
= −√2

2𝑇𝑇
± 𝑗𝑗 √2

2𝑇𝑇
. 

 
 Звідки виходить, що μ = 1 і уявна частина коренів дорівнює дійсної, тобто 
 
β = α = 10,73, р1,2 = -10,73 ± j10,73. 
 
 Для знаходження коефіцієнтів a і b слід порівняти рівняння 𝑄𝑄(𝑝𝑝) = 𝑝𝑝2 + (𝑎𝑎𝑎𝑎 + 1)𝑝𝑝 + 𝑎𝑎 и Q(p) 

= T2p2 + 2ξTp + 1, при цьому перше рівняння для зручності подальших розрахунків представимо 
так 

 
𝑄𝑄(𝑝𝑝) = 1

𝑎𝑎
𝑝𝑝2 + (𝑎𝑎𝑎𝑎+1)

𝑎𝑎
𝑝𝑝 + 𝑎𝑎. 

 
 Прирівнявши коефіцієнти обох рівнянь при однакових ступенях, отримаємо для Т = 

√2/2∙10,73 = 0,066 c: 
 

1
𝑎𝑎

= 𝑇𝑇2 → 𝑎𝑎 =
1
𝑇𝑇2

=
1

0,0662
== 230,27; 

 
(𝑎𝑎𝑎𝑎 + 1)

𝑎𝑎
= 2𝜉𝜉𝜉𝜉 → 𝑏𝑏 =

2𝜉𝜉𝜉𝜉𝜉𝜉 − 1
𝑎𝑎

=
2 ⋅ 0,707 ⋅ 0,066 ⋅ 230,27 − 1

230,27
= 0,089. 

 
 Як перевірку отриманих результатів можна виконати побудову математичної моделі САК 

серед пакета Matlab Simulink на основі структурної моделі. Подальше моделювання та отримання 
графіків перехідних процесів дозволяє розрахувати показники якості САК та порівняти їх із 
вихідними даними. 

 
 РОЗРАХУНОК КОЕФІЦІЄНТІВ ПОМИЛКИ РЕГУЛЮВАННЯ  
 
Розглянемо приклад для системи, структурна схема якої представлена малюнку 3.34. Визначити 

помилку регулювання системи ε(р), при зміні вхідної величини і впливу, що обурюється, за 
законами x(t) = 5 + t f (t) =10t2 + 3. 
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Малюнок 3.34 – Початкова схема САУ  
 
Записуємо вираз для визначення помилки регулювання САК що складається з помилки 

регулювання за впливом εх(р) і помилки регулювання по обурюючому впливу εf(р): 
ε(p) = εx(p)+ εf(p)= Ex(p)⋅ x(p)+ Ef(p)⋅ f(p). 
 
Так як закони зміни вхідних (що задає та обурює) впливів представлені в часовій області, то вираз 

для визначення помилки регулювання САУ матиме вигляд: 
 

 
Визначаємо передавальні функції замкнутих систем щодо помилки регулювання по задаючому та 

обурювальному впливам: 
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Далі визначаємо коефіцієнти помилок для впливу, що задає і обурює. Кількість коефіцієнтів 

помилок регулювання достатньо обчислити стільки, скільки похідних не рівних нулю має вхідний 
вплив. 

Так, для впливу, що задає: 
 
x(t) = 5 + t, 
 
x′(t) =1 (його перша похідна), 
 
x′′(t) = 0 (його друга похідна). 
 
Достатньо обчислити лише два коефіцієнти С0 і С1, так як функція х(t) має тільки одну похідну 

x′(t), не рівну нулю. 
Для впливу, що збурює: 
f (t) =10t2 + 3, 
f '(t) = 20t (його перша похідна), 
 
f ′′(t) = 20 (його друга похідна), 
 
f ′′′(t) = 0 (його третя похідна). 
 
Достатньо обчислити три коефіцієнти С0, С1 і С2, так як функція f(t) має дві похідних f '(t) і f ''(t), 

що не дорівнє нулю. 
Обчислення коефіцієнтів помилок за впливом, що задає, проводиться за відомими формулами 

(перший спосіб визначення), а по збурюваному впливу - розділимо багаточлен чисельника на 
багаточлен знаменника (другий спосіб визначення). 

Для впливу, що задає: 
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Для впливу, що збурює: 

 
 

 
 
Записуємо остаточний вираз помилки регулювання САК: 

 
Записуємо остаточний вираз помилки регулювання САК 
ε(t) = 0∙(5 + t) + 0,01∙1 + 0,2∙(10t2 + 3) + 0,018∙20t – 0,00218∙20 = 2t2 +0,36t + 0,5664. 
 

4. ПРИКЛАДИ ЗАСТОСУВАННЯ MATLAB В РОЗРАХУНКАХ 
 

 
1. Поелементне множення векторів 
>> a=[5 6 9]; 
>> b=[10 9 5]; 
>> a.*b 
ans = 
    50    54    45 
>> 
 
2. Створення матриці 
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>> A=[34 57 9; -2 4 7; 8 19 -1] 
A = 
    34    57     9 
    -2     4     7 
     8    19    -1 
>> 
 
3. Виділення заданого стовпця матриці  
>> A(:,2) 
ans = 
    57 
     4 
    19 
>> 
 
4. Виділення заданого рядка матриці 
>> A(3,:) 
ans = 
     8    19    -1 
>> 
 
5. Виділення визначника матриці 
>> det(A) 
ans = 
       -2210 
>> 

  
6. Обчислення зворотної матриці 
>> inv(A) 
ans = 
    0.0620   -0.1032   -0.1643 
   -0.0244    0.0480    0.1158 
    0.0317    0.0860   -0.1131 
>> 
ФУНКЦІЇ MATLAB ДЛЯ СТВОРЕННЯ ПЕРЕДАВАЛЬНИХ ФУНКЦІЙ ЛАНОК 

СИСТЕМИ 
 
7. Необхідно утворити передавальну функцію  
 

16541540
56,0)( 2 ++

=
ss

sW
 

 
>> n=[0.56]; 
>> m=[1540 654 1]; 
>> W=tf(n,m)  
Transfer function: 
        0.56 
-------------------- 
1540 s^2 + 654 s + 1  
>> 
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Функцію W=tf (n,m) можна також у наступному вигляді: 
>>W=tf ( [0.56], [1540,654,1]) 
 
Функції pole() та zero() 
8. Визначити полюси та нулі передавальної функції, отриманої у прикладі 11. 
 
>> W=tf([0.56],[1540 654 1]); 
>> P=pole(W) 
P = 
   -0.4231 
   -0.0015 
>> 
 
9. Знайти коріння рівняння 3S3 + 5S2 + 7  і корінням відновити поліном. 
>> P=[3 5 0 7]; 
>> r=roots(P) 
r = 
  -2.1646           
   0.2490 + 1.0079i 
   0.2490 - 1.0079i 
>> P=poly(r) 
P = 
  1.0000    1.6667    0.0000    2.3333 
 
Функція conv() 
10. Помножити поліноми p(s) = 3s2 +5s + 7 та q(s) = 8s + 4 
>> p=[3 5 7]; 
>> q=[8 4]; 
>> G=conv(p, q) 
G = 
    24    52    76    28 
>> 
Або G = 24s3 + 52s2 + 76s + 28 
11. Обчислити P(s) = 5s2 + 2s + 7 при s = 9 
>> n=[5 2 7]; 
>> z=polyval(n,9) 
z = 
430 
>> 
 
Операції з передатними функціями ланок. Складання передавальних функцій 
 
12 Скласти передавальні функції 

712119
43101)(   и   

374
9)( 23

2

221 +++
++

=
++

=
sss

sssW
ss

sW
 

>> n1=[9]; 
>> m1=[4 7 3]; 
>> q1=tf(n1,m1) 
  
Transfer function: 
       9 
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--------------- 
4 s^2 + 7 s + 3  
>> n2=[1 10 43]; 
>> m2=[19 1 12 7]; 
>> q2=tf(n2,m2) 
Transfer function: 
    s^2 + 10 s + 43 
----------------------- 
19 s^3 + s^2 + 12 s + 7  
>> Q=q1+q2  
Transfer function: 
    4 s^4 + 218 s^3 + 254 s^2 + 439 s + 192 
------------------------------------------------ 
76 s^5 + 137 s^4 + 112 s^3 + 115 s^2 + 85 s + 21  
>> 
 
Функція pz map () 
 
13. Подати на площині S нулі та полюси функції 
 
     2 s^4 + 18 s^3 + 18 s^2 + 651 s + 78 
Q(s) -------------------------------------------- 
    18 s^5 + 45 s^4 + 32 s^3 +7 s^2 + 8 s + 418 
>> n=[2 18 18 651 751]; 
>> m=[18 45 32 7 8 418]; 
>> q=tf(n, m) 
  
Transfer function: 
   2 s^4 + 18 s^3 + 18 s^2 + 651 s + 751 
-------------------------------------------- 
18 s^5 + 45 s^4 + 32 s^3 + 7 s^2 + 8 s + 418 
  
>> pzmap(q) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Малюнок. . Нулі та полюсипередавальної функції 
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14. Структурну схему системи керування показано на рис.  
 

 
Малюнок. Структурна схема системи  
 
Необхідно отримати передатну функцію системи 

,
)(
)()(

SX
SYSQ =

 
 
Якщо передавальні функції ланок мають вигляд: 

,
5234

7.0)(       ,
428

316678)( 2

2

1 +
=

++
=

s
sQ

s
ssSQ

 
 

Рішення: 
>> n1=[678 16 3]; 
>> m1=[428 0]; 
>> q1=tf(n1,m1); 
>> n2=[0,7]; 
>> m2=[234 5]; 
>> q2=tf(n2,m2); 
>> Q=series(q1,q2) 
Transfer function: 
4746 s^2 + 112 s + 21 
--------------------- 
 100152 s^2 + 2140 s 
 
Функція parallel () 
15. Структурну схему системи керування наведено на рис. 

 
 
Мал. Структурна схема системи, що складається з паралельних ланок 
 
Необхідно отримати передатну функцію системи, якщо передатні функції ланок мають 

вигляд: 

,
5234

7.0)(       ,
428

316678)( 2

2

1 +
=

++
=

s
sQ

s
ssSQ
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Рішення 
>> n1=[678 16 3]; 
>> m1=[428 0]; 
>> q1=tf(n1,m1); 
>> n2=[0,7]; 
>> m2=[234 5]; 
>> q2=tf(n2,m2); 
>> Q=parallel(q1,q2) 
Transfer function: 
158652 s^3 + 7134 s^2 + 3778 s + 15 
----------------------------------- 
        100152 s^2 + 2140 s 
>> 
 
Функція feedback() 
16. Структурну схему системи керування наведено на рис.  

 
Мал. Структурна схема системи керування. 
 
Передатні функції ланок мають вигляд: 

,
5234

7.0)(       ,
428

316678)( 2

2

1 +
=

++
=

s
sQ

s
ssSQ

 
 
 Необхідно отримати передатну функцію замкнутої системи керування: 

.
XS()
Y(S)Q(S) =

 
 Передатна функція Q(S) визначається за виразом 

.
)()(1

)()()(
21

21

SQSQ
SQSQSQ

⋅+
⋅

=
 

Рішення: 
>> n1=[678 16 3]; 
>> m1=[428 0]; 
>> q1=tf(n1,m1); 
>> n2=[0,7]; 
>> m2=[234 5]; 
>> q2=tf(n2,m2); 
>> Q=series(q1,q2) 
Transfer function: 
4746 s^2 + 112 s + 21 
--------------------- 
 100152 s^2 + 2140 s 
>> feedback(Q, [1]) 
Transfer function: 
 4746 s^2 + 112 s + 21 
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------------------------ 
104898 s^2 + 2252 s + 21 
>> 
 
17. Структурну схему системи керування наведено на рис.. Необхідно отримати передатну 

функцію замкнутої системи 

)(
)()(

SX
SYSQ =

 
 

 
 
Мал. Структурна схема системи з гнучким негативним зворотним зв'язком  
Передавальні функції ланок мають вигляд: 

,
5234

7.0)(       ,
428

316678)( 2

2

1 +
=

++
=

s
sQ

s
ssSQ

 
Рішення: 
>> n1=[678 16 3]; 
>> m1=[428 0]; 
>> n2=[0,7]; 
>> m2=[234 5]; 
>> q1=tf(n1,m1); 
>> q2=tf(n2,m2); 
>> feedback(q1,q2,-1) 
Transfer function: 
158652 s^3 + 7134 s^2 + 782 s + 15 
---------------------------------- 
     104898 s^2 + 2252 s + 21 
>>  
 
КОМПЛЕКСНІ ЧИСЛА 
Додавання комплексних чисел 
 
Алгебра векторів та матриць. Створення векторів та матриць 
Приклад 1 
 
>> [8,5,7,25,-2] 
 
ans = 
 
     8     5     7    25    -2 
 
>> 
>> v=[7 12+6i 6-7i 15] 
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v =    7.0000            12.0000 + 6.0000i   6.0000 - 7.0000i  15.0000  
 
Приклад 2 
>> M = [6 7 13; 5 -5 19; 6 -21 59] 
Після натиснення <Enter> на екрані з’явиться наступна матриця: 
M = 
     6     7    13 
     5    -5    19 
    6     -21  59 
>> M = [9-6i,12+i,1;4,5,2;i,8,-i] 
А тепер матриця буде виглядати так: 
M = 
   9.0000 - 6.0000i  12.0000 + 1.0000i   1.0000           
   4.0000             5.0000             2.0000           
        0 + 1.0000i   8.0000                  0 - 1.0000i 
>> 
Приклад  3 
>>V = [1:7] 
V =     1     2     3     4     5     6     7 
>> M=[1:3;2:4;7:9] 
M = 
     1     2     3 
     2     3     4 
     7     8     9 
 
Тут рішення отримано випадку постійного кроку, рівного 1. 
При постійному кроці, відмінному від одиниці, процедури утворення вектора та матриці та 

відгуки мають вигляд: 
>> V=[1:0.4:4] 
V = 
    1.0000    1.4000    1.8000    2.2000    2.6000    3.0000    3.4000    3.8000 
>> M=[1:0.2:1.8;2:0.4:3.6;1:5] 
M = 
    1.0000    1.2000    1.4000    1.6000    1.8000 
    2.0000    2.4000    2.8000    3.2000    3.6000 
    1.0000    2.0000    3.0000    4.0000    5.0000 
Виклик на екран та заміна елементів матриці 
приклад 4 
>> v=[9 12 6 7 -2]; 
v(4) 
ans = 
     7 
>> M=[4,8,19; 1 4 3; -7,9, 2]; 
>> M(1,2) 
ans = 
    8 
Приклад 5 
Нехай вектор та матриця – ті ж, що й у попередньому прикладі. Замінимо третій елемент вектора 

(зі значенням 3) на 7, а елемент матриці, що знаходиться у другому рядку та третьому стовпці (зі 
значенням 3), – на 12. 

Рішення:>> v(4)=8 
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v = 
     9    12     6     8    -2 
>> 
>> M(2,2)=12 
M = 
     1     2     3 
     2    12     4 
     7     8     9 
>> 
Приклад 6 
Нехай матриця має вигляд 
>>  M=[1 4 3;2 9 14;5 2 -9] 
M = 
     1     4     3 
     2     9    14 
     5     2    -9 
 Необхідно видалити другий рядок та третій стовпець. 
Рішення матиме вигляд: 
 
>> M(3,:) 
ans = 
     5     2    -9 
>> M(:,2) 
ans = 
     4 
     9 
     2 
>> 
Приклад 7 
Нехай є три наступні вектори: 
 
>>V1= [ 5 8 2] 
V1 = 
5 8 2 
>>V2=[ 3 -2 1] 
V2 = 
     3    -2     1 
>> V3=[5 8 10] 
V3 = 
     5     8    10 
>> 
>>M=[V1;V2;V3] 
M = 
     5     8     2 
     7     4     3 
     5     8    10 
>>  
Виконаємо тепер операцію конкатенації. Зробимо з отриманої матриці матрицю розміром 6х6. 

Для цього утворюємо три нові матриці M+3, M-5 b M*2  
Процедури мають вигляд: 
>>Z=[M, M+3; M-5, M*2] 
Z = 
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     5     8     2     8    11     5 
     7     4     3    10     7     6 
     5     8    10     8    11    13 
     0     3    -3    10    16     4 
     2    -1    -2    14     8     6 
     0     3     5    10    16    20 
>> 

Математичні операції з векторами та матрицями 
Визначник матриці 
Приклад 8 
>> M=[4 5 8;-1 3 6;10 2 3]; 
>> det(M) 
ans = 
   47 
>> M=[1+3i, 6, -2.5;i,-9,5;8,5,0]; 
>> det(M) 
ans = 
  35.0000 -87.5000i 
>> 
Транспортування матриці 
Приклад 9 
Нехай вихідна матриця має вигляд 
>> M=[7 5 6; 4 5 3 ;10 -7 6]; 
>> Z=M' 
Z = 
     7     4    10 
     5     5    -7 
     6     3     6 
>> 
 
Слід матриці 
Приклад 10 
Нехай матриця має вигляд 
>>M=[9 18 13;3 2 6; 7 -1 6] 
M = 
     9    18    13 
     3     2     6 
     7    -1     6 
>> 
Її діагональними елементами є 9,2,6, які сума дорівнює 17. 
>> Z=trace(M) 
Z = 
    17 
>> 
Зворотня матриця 
>> M=[5 4 6;9 1 7;10 2 6]; 
>> Z=inv(M) 
Z = 
   -0.1111   -0.1667    0.3056 
    0.2222   -0.4167    0.2639 
    0.1111    0.4167   -0.4306 
>> 
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Поодинока матриця 
Приклад 12 
>>M=eye(4) 
M = 
     1     0     0     0 
     0     1     0     0 
     0     0     1     0 
     0     0     0     1 
>> 
>>M=eye(2,4) 
M = 
     1     0     0     0 
     0     1     0     0 
>> M=[1 21 4 3;5,2,-7,9;2,10,3,0;1,9,3,4]; 
>> M=eye(size(M)) 
M = 
     1     0     0     0 
     0     1     0     0 
     0     0     1     0 
     0     0     0     1 
 
Утворення матриці з одиничними елементами 
Приклад 14 
>> M=zeros(3) 
M = 
     0     0     0 
     0     0     0 
     0     0     0 
>> M=zeros(3,4) 
M = 
     0     0     0     0 
     0     0     0     0 
     0     0     0     0 
 
>> M=[1,2,3;2,3,4;3,4,5]; 
>> M=zeros(size(M)) 
M = 
     0     0     0 
     0     0     0 
     0     0     0 
Вектор рівномірних точок 
Приклад 15 
>>R=linspace(1,5) 
R = 
    1.0000    1.0404    1.0808    1.1212    4.9596    5.0000 
>> 
>> R=linspace(1,10,5) 
R = 1.0000    3.2500    5.5000    7.7500   10.0000 
Перестановка елементів матриці 
Приклад 16 
>>M=[1,2,3,4;4,3,2,1]; 
>> Z=fliplr(M) 



83 
 

Z = 
     4     3     2     1 
     1     2     3     4 
>> W=flipud(M) 
W = 
     4     3     2     1 
     1     2     3     4 
>> 
Приклад 17 
>>V=[3,8,5]; 
>> P=perms(V) 
P = 
     5     8     3 
     5     3     8 
     8     5     3 
     8     3     5 
     3     8     5 
     3     5     8 
>> 
Створення матриць із заданою діагоналлю 
Приклад 18 
>>V=[4,5,8]; 
>>M=diag(V,0) 
M = 
     4     0     0 
     0     5     0 
     0     0     8 
>> 
>> Z=diag(V,-2) 
Z = 
     0     0     0     0     0 
     0     0     0     0     0 
     4     0     0     0     0 
     0     5     0     0     0 
     0     0     8     0     0 
>> 
>> V=diag(M,0) 
V = 
     4 
     5 
     8 
>> M=[1,2,-3,5;-2,6,4,7;1,0,4,-2]; 
>> V=diag(M,1) 
V = 
     2 
     4 
    -2 
>> 
>> V=diag(M) 
V = 
     1 
     6 
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     4 
>> 
Створення масивів із випадковими елементами 
Приклад 19 
>> Z=rand(3) 
Z = 
    0.8147    0.9134    0.2785 
    0.9058    0.6324    0.5469 
    0.1270    0.0975    0.9575 
>> 
>> M=[6 4 8; 10 3 6; 7 2 3]; 
>> Z=rand(size(M)) 
Z = 
    0.9649    0.9572    0.1419 
    0.1576    0.4854    0.4218 
    0.9706    0.8003    0.9157 
>> 
 
Покажемо графік, утворений випадковими числами. Для цього сформуємо координати точок на 

площині у вигляді матриці випадкових чисел з великим числом рядків та одним стовпцем по осях 
x та y. 

Програма матиме такий вигляд: 
>> X=rand(900, 1); 
>> Y=rand(900, 1); 
>> plot(X, Y, '.') 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Приклад 21 
Побудувати гістограму випадкових чисел за n = 5000 і m = 400 
У цьому випадку програма матиме вигляд: 
 
>> Y=randn(5000, 1); 
>> hist(Y, 400) 
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Поворот матриці 
Приклад 22 
 
>> M=[2,4,5; 7,8,4; 4,6,2]; 
>> Z=rot90(M,2) 
Z = 
     2     6     4 
     4     8     7 
     5     4     2 
>> 
 
Виділення трикутних частин матриці 
Приклад 23 
>>M=[6 7 8 ; 9 10 4; 3 1 8] 
M = 
     6     7     8 
     9    10     4 
     3     1     8 
>> 
>>Z=tril(M) 
Z = 
     6     0     0 
     9    10     0 
     3     1     8 
>>Z=tril(M,1) 
Z = 
     6     7     0 
     9    10     4 
     3     1     8 
 
Обчислення математичного квадрата 
Приклад 24 
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>> M=magic(7) 
M = 
    30    39    48     1    10    19    28 
    38    47     7     9    18    27    29 
    46     6     8    17    26    35    37 
     5    14    16    25    34    36    45 
    13    15    24    33    42    44     4 
    21    23    32    41    43     3    12 
    22    31    40    49     2    11    20 
>> 
Математичні операції над векторами та матрицями 
Приклад 25 
>> M=[3 5 7; 9 10 1; 4 6 2]; 
>> N=[3 4 2; 5 7 8 ;2 3 5]; 
>> M.*N 
ans = 
     9    20    14 
    45    70     8 
     8    18    10 
>> 
ans = 
    82   107    40 
   121   151    75 
    74    92    38 
 
Приклад 26 
>>V1=[4,6,2,7]; 
>> V2=[-5,4,2,14]; 
>> V1+V2 
ans = 
    -1    10     4    21 
>> 
>> V1-V2 
ans = 
     9     2     0    -7 
>> 
>> V1.*V2 
ans = 
   -20    24     4    98 
>> V1.^2 
ans =     1     4    16    49 
 
>> V1/V2 
ans = 
    0.4398 
>> V1\V2 
ans = 
         0         0         0         0 
         0         0         0         0 
         0         0         0         0 
   -0.7143    0.5714    0.2857    2.0000 
>> V1./V2 
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ans = 
   -0.8000    1.5000    1.0000    0.5000 
>>V1.\V2 
ans = 
   -1.2500    0.6667    1.0000    2.0000 
 
Приклади утворення функцій від вектора та матриць 
Приклад 27 
>>N=[4,5,2,3,9]; 
>>Z=log(N) 
Z = 
    1.3863    1.6094    0.6931    1.0986    2.1972 
>> Z=exp(N) 
Z = 
  1.0e+003 * 
    0.0546    0.1484    0.0074    0.0201    8.1031 
>> Z=sin(N) 
Z = 
   -0.7568   -0.9589    0.9093    0.1411    0.4121 
>> 
Приклад 28 
>> K=[4,-9,2,1,1,4]; 
>> Z=log(K) 
Z = 
   1.3863             2.1972 + 3.1416i   0.6931    0    0   1.3863           
>> 
>>  Z=exp(-K) 
Z = 
  1.0e+003 * 
    0.0000    8.1031    0.0001    0.0004    0.0004    0.0000 
>> 
>> Z=exp(K)+2*K+K.^2 
Z = 
   78.5982   63.0001   15.3891    5.7183    5.7183   78.5982 
>> 
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