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Abstract. The study presents an innovative approach to creating extended datasets for modelling magnetic separation 
of iron ore, which is crucial for enhancing efficiency and automating enrichment processes in the mining industry. 
The aim of the research was to develop a methodology for creating extended datasets for modelling magnetic 
separation of iron ore that takes into account the specifics of Ukrainian deposits and allows for the generation of 
representative data in conditions of limited real production data by integrating physical modelling with machine 
learning methods. Research methods: modelling using mathematical learning, simulation based on physical 
processes, statistical analysis. The study examined the use of the USIM PAC simulator for modelling the iron ore 
enrichment system and adapting data for magnetic enrichment, ensuring the accuracy of modelling technological 
enrichment processes. The simulator was used to obtain a dataset from physical modelling of part of the enrichment 
process based on data from the Valyavkinske deposit. Primary modelling of the dataset was analysed, including 
statistical characteristics, distribution shape, and normality tests to identify fields requiring correction. Based on 
the analysis results, specific requirements for data distribution in the new dataset to be formed for further use were 
established. In accordance with these requirements, several mathematical models were implemented to reproduce 
the specified criteria and parameters. For each data field, the best model was carefully selected, and the dataset 
was corrected based on its data to bring the distribution as close as possible to the desired one. Comprehensive 
validation of the resulting corrected data was conducted, emphasising the preservation of the physical validity 
of the data and their correspondence to real enrichment processes. A detailed analysis of the corrected data 
was performed, as well as the statistical characteristics of the resulting dataset, confirming the effectiveness of 
the developed comprehensive methodology for modelling and adapting data for magnetic enrichment of iron 
ore. The methodology holds practical value due to its innovative approach to creating extended datasets for 
modelling magnetic separation of iron ore, enhancing the efficiency and automation of enrichment processes 
while considering the specifics of deposits and generating representative data in conditions of limited real data

Keywords: nonlinear modelling of enrichment; separation control; machine learning in enrichment; automation of 
enrichment processes; simulation of technological parameters

Introduction
The relevance of this work is determined by the neces-
sity to improve the processes of modelling magnetic 
separation of iron ore under conditions of limited real 

data, especially for Ukrainian deposits. The specif-
ics of Ukrainian iron ore deposits, particularly in the 
Kryvyi Rih basin, require the development of special  
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ore reduction in industrial reactors, optimising pro-
cess parameters and developing new iron production 
technologies. J.  Liu et al.  (2021) studied the magnetic 
separation process in an aerodynamic drum magnet-
ic separator (ADMS) using the finite element method 
and multiphysics modelling in COMSOL Multiphysics 
software. The modelling of the magnetic field, airflow, 
and particle movement in the separator was conducted. 
The influence of various parameters (air velocity, mag-
netic field intensity, positioning of magnetic poles) on 
the separation efficiency of magnetic and non-magnet-
ic particles was demonstrated. The simulation results 
were verified through experimental measurements and 
calculations. The proposed model allows for the predic-
tion of particle trajectories and extraction probabilities 
under different conditions, which can be useful for pre-
cise control of the magnetic separation process using 
combined force fields.

Moreover, there is a growing interest in the appli-
cation of machine learning methods, particularly con-
volutional neural networks (CNNs), which open new 
opportunities for predicting separation efficiency un-
der complex conditions. Research conducted by Y. Li et 
al. (2022) demonstrates the successful use of CNNs for 
modelling grinding processes in ball mills, based on ex-
ternally measured process variables. These approach-
es can be adapted for magnetic separation, enhancing 
prediction accuracy and reducing the need for large 
volumes of experimental data. The implementation of 
machine learning fosters the development of hybrid 
models that combine theoretical knowledge with data 
from discrete element method simulations, providing 
more effective and rapid modelling of complex systems. 

N. Yang et al.  (2022) analysed the development of 
modelling methods for mineral deposits, emphasising 
the transition to three-dimensional digital models and 
the importance of understanding ore formation process-
es. The authors highlighted the application of machine 
learning methods, particularly convolutional neural 
networks, for predicting hidden deposits. They stressed 
the issue of data scarcity and proposed the use of ad-
vanced machine learning techniques to process incom-
plete data, underscoring the importance of integrating 
expert knowledge. Despite progress in modelling mag-
netic separation, there remains a need for the devel-
opment of comprehensive methodologies for creating 
accurate models under conditions of limited real data.

V. Morkun et al.  (2020) investigated the identifica-
tion of nonlinear dynamic enrichment objects using a 
second-order Volterra model and its projection onto 
orthonormal Laguerre basis functions. This potential-
ly impacts the improvement of modelling accuracy for 
iron ore enrichment processes, reducing model com-
plexity and sensitivity to noise. O. Porkuian et al. (2019) 
considered the development of a predictive control 
system for the iron ore enrichment process based on 
a hybrid Hammerstein model. The model combines a 

extraction and processing technologies. The develop-
ment of a comprehensive methodology for creating ex-
tended datasets will help overcome these limitations, 
taking into account local geological conditions and en-
suring more effective modelling of the magnetic sepa-
ration process. This will contribute to the optimisation 
of enrichment processes, improvement of concentrate 
quality, and reduction of energy consumption in the 
mining industry of Ukraine.

Current trends in modelling magnetic separation 
are characterised by a comprehensive approach that in-
tegrates various computational and analytical methods. 
These approaches encompass a wide range from classi-
cal numerical methods to advanced techniques in ma-
chine learning and multiphysics modelling. Significant 
progress has been made in developing methods that 
allow for the simultaneous consideration of complex 
interactions between different physical processes in-
herent in magnetic separation. Concurrently, optimisa-
tion methods for control are being developed, aimed at 
enhancing the efficiency of enrichment processes. The 
integration of these diverse approaches creates a pow-
erful foundation for developing adaptive and high-pre-
cision models capable of functioning under conditions 
of limited experimental data and accounting for the 
specifics of local conditions.

In the study by V.V. Shenoy et al.  (2024), the influ-
ence of the magnetic field on flow behaviour in a step 
geometry is examined. Using modern computational 
fluid dynamics methods, particularly the open-source 
package OpenFOAM, the authors investigated the in-
teraction between magnetic forces and geometric fac-
tors affecting flow characteristics. The study revealed 
important patterns in flow behaviour under the influ-
ence of the magnetic field and geometry. The proposed 
mathematical models allow for the prediction of key 
flow parameters under various conditions. The results 
of this CFD work have the potential for application in a 
wide range of engineering tasks related to magnetohy-
drodynamic flows and boundary layer control.

In the work by R. Chowdhury et al. (2024), a compre-
hensive method for optimising medium parameters for 
effective material separation in a hydrocyclone separa-
tor is proposed, combining theoretical approaches and 
CFD modelling. The use of CFD allowed for a detailed 
analysis of the impact of medium density on the sepa-
ration of PVC and PET particles, visualising and assess-
ing key process parameters. Although the study focused 
on plastics, the methodology can be applied in various 
fields, including magnetic enrichment, where consider-
ation of medium and particle properties is critical for 
optimising separation.

M.E.  Kinaci  et al.  (2020) investigated the process 
of  indirect reduction of iron ore in fluidised beds us-
ing the discrete element method (DEM) in conjunction 
with computational fluid dynamics. The developed 
model can be applied to simulate the processes of iron 
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fuzzy nonlinear block and a crisp linear dynamic block 
for effective approximation of nonlinear, dynamic, and 
non-stationary properties of enrichment line objects. 
The proposed algorithms ensure rapid real-time iden-
tification and optimal control considering constraints, 
leading to improved concentrate quality and reduced 
energy consumption.

S. Rajendran & C.V.G.K. Murty (2023) reviewed mod-
ern approaches to numerical modelling of enrichment 
processes for coal, iron ore, chromite, and bauxite. This 
allows for a better understanding of key process varia-
bles affecting the efficiency of enrichment equipment 
and the potential for optimising technological oper-
ations. The work provides tools for predicting the be-
haviour of complex mineral enrichment systems, con-
tributing to the development of more effective mineral 
processing methods.

The aim of this research was to develop an inno-
vative methodology for creating extended datasets for 
modelling magnetic separation of iron ore, taking into 
account the specifics of Ukrainian deposits and the lim-
itations of available information.

Materials and Methods
Justification for the choice of modelling method. An anal-
ysis of existing methods for modelling the magnetic 
separation process revealed the necessity of applying 
a comprehensive approach to address the task at hand. 
Considering the complexity and non-linearity of the 
magnetic separation process, as well as the specifics 
of the available data and tools, particularly USIM PAC – 
a commercial simulator for technological processes 
developed by CASPEO (Brochot et al., 1995) – and the 
Python Spyder IDE development environment (n.d.), 
the decision was made to employ a hybrid modelling 
method (McCoy & Auret, 2019). The main arguments in 
favour of choosing the hybrid method are as follows:

1.  Complexity of data processing. The proposed 
hybrid method combines physical modelling of mag-
netic separation with machine learning techniques. In-
itially, data is obtained from a model built on physical 
principles using the USIM PAC technological process 
simulator. This model is based on fundamental physi-
cal laws and empirical relationships that describe the 
magnetic separation process. Subsequently, this data is 
sequentially expanded and restructured using machine 
learning algorithms. In particular, neural networks are 
employed to uncover hidden patterns, clustering meth-
ods are used to group similar results, and regression al-
gorithms are applied to predict process efficiency under 
various conditions. This combination of physical mod-
elling and machine learning methods allows for effec-
tive processing of complex, non-linear relationships in 
magnetic separation data, significantly enhancing the 
capabilities of the initial physical model.

2. Adaptability to different conditions. In the study, 
data from the Valyavkinske deposit (Bogdanov,  1984) 

was used as an example for initial modelling. The 
deposit was chosen due to its typical characteristics, 
which well represent the general conditions of iron ore 
deposits in Ukraine. However, the developed approach 
aims to create a general model of the enrichment sys-
tem that can be adapted to various mining and process-
ing plants. The hybrid method provides the necessary 
flexibility for such adaptation, allowing the model to be 
tailored to the specific conditions of other deposits and 
mining and processing plants (MPP). A key aspect of this 
adaptability is the ability to replace the technological 
parameter data of MPPs and deposits. This allows for 
the modelling results to be aligned with the conditions 
of different MPPs. For example, by changing parameters 
such as ore characteristics, equipment configuration, or 
operating modes, the model can be adapted to the spe-
cifics of a particular plant. Such flexibility is especial-
ly useful when optimising processes at new deposits 
or modernising existing MPPs. The hybrid method, by 
combining physical modelling with machine learning 
techniques, allows for rapid retraining of the model 
on new data while maintaining a fundamental under-
standing of the physical enrichment processes.

3. Working with limited data. In conditions of lim-
ited access to real production data, the hybrid meth-
od allows for the effective use of artificially generated 
data while preserving the physical validity of the model 
through the use of USIM PAC. The effectiveness of this 
approach is supported by general principles of using 
simulators in modelling enrichment processes, as de-
tailed in the work of A.  Karpatne  et al.  (2017), where 
the authors emphasise the importance of integrating 
physical models and machine learning methods to en-
hance prediction accuracy in complex systems. Howev-
er, further validation on real production data remains 
an important step for fully confirming the accuracy and 
reliability of the developed model.

4. Preparation for the development of a control sys-
tem model. Based on a limited initial dataset obtained 
from the operation of USIM PAC, an expanded dataset 
is created. This expanded dataset is characterised by a 
significantly larger volume while preserving key rela-
tionships between fields that correspond to the math-
ematical dependencies of the USIM PAC simulation 
system. Such an approach potentially allows for the 
generation of a more diverse data sample, which can 
serve as a foundation for the further development of a 
predictive automated control system for the non-linear 
iron ore enrichment system. However, to confirm the ef-
fectiveness of this approach, thorough validation of the 
expanded dataset is necessary. As noted by T. Hastie et 
al. (2009) in their foundational work on statistical learn-
ing, it is important to conduct comprehensive statistical 
analysis to verify the preservation of key relationships 
and to perform testing on real data where possible. This 
ensures the reliability and practical applicability of the 
developed model.
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5.  Potential for further development. The hybrid 
method leaves room for the integration of additional 
modelling methods in the future, which may be benefi-
cial for further research and improvement of the system.

Characteristics and structure of the enrichment sys-
tem model. The enrichment system model is based on 
geological and mineralogical data from the Valyavkin-
ske deposit of iron quartzites (Bogdanov,  1984; Ku-
pin, 2008). This data includes ore characteristics such as 
iron content, mineral composition, textural-structural 
features, and physical properties, which are crucial for 
designing the enrichment process. Although the data is 
derived directly from the deposit, it has been adapted 
for modelling the first stage of magnetic enrichment, 
typical of most Ukrainian MPPs (Sokur et al., 2022). This 
allows for the creation of a model that reflects the typ-
ical conditions for enriching iron quartzites in Ukraine. 
The overall structure of the studied part of the iron ore 
enrichment system is presented in Figure 1.

(25-35%), the flow rate of additional water (180-
393  m3/h), and the iron content in the incoming ore 
(36-38%). The output parameters encompass the iron 
content in the concentrate (52.5-55.5%) and tails (12.6-
12.7%), as well as the mass flow rate of the concentrate 
(55-60 t/h) and tails (40-45 t/h). The selected charac-
teristics of the deposit include an average rock density 
of 3.2-3.4 t/m3, the grain size of magnetite inclusions of 
0.074-0.044 mm, and the ratio of magnetic to non-mag-
netic minerals of 45-55.

The technological process, illustrated in Figure 1, 
consists of the following operations: the feed ore is 
supplied by a feeder to a ball mill for fine grinding. The 
resulting ore pulp is directed to the hydrocyclone for 
hydraulic classification by size. The overflow from the 
hydrocyclone is sent to a magnetic separator, where 
the material is separated based on magnetic properties 
into a magnetic product (concentrate) and a non-mag-
netic fraction (tails). The sands from the hydrocyclone 
are returned for regrinding in the ball mill, forming a 
closed grinding circuit. Control is achieved by adjust-
ing the percentage of solids entering the hydrocyclone 
within the range of 25-35%, which affects the flow rate 
of additional water and ensures the quality of the con-
centrate (specifically, the iron content) in accordance 
with the target indicators established in the technolog-
ical maps of the MPPs. This model provides a founda-
tion for the development of automated control systems 
tailored to the specifics of Ukrainian iron ore deposits.

The use of the USIM PAC simulator. The technological 
process simulator USIM PAC from CASPEO was chosen 
to create the initial model of the iron ore beneficia-
tion system. USIM PAC stands out among alternatives 
due to its greater number of equipment prototypes, the 
ability to use different models for circuit elements, and 
advanced result analysis. Its reliability is confirmed by 
widespread application in metallurgy and chemistry 
(Brochot et al., 2002). For modelling the iron ore bene-
ficiation process, the internal base Model 140 – “Feed 
Liberation” was utilised, which is an integral part of the 
commercial USIM PAC simulator (Fig. 2).

Figure 1. Technological scheme of iron ore enrichment 
with control of the solid density in the hydrocyclone

Source: developed by the author based on typical technological 
process schemes presented in M. Sokur et al. (2022)

Sump 

Pump 

Density Meter 

Water 
Management 
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Tails 

Ore feed 
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Magnetic separator 

Concentrate 

Sands 

Flood 

The key input parameters of the model include 
the percentage of solids entering the hydrocyclone  

Figure 2. Iron ore enrichment system based on the Model 140 USIM PAC
Source: image of a typical educational Model 140 that is part of the USIM PAC

This model was chosen for its effectiveness in sim-
ulating the early stages of ore processing, making it 
particularly valuable for modelling the enrichment of 

iron ores from Ukrainian deposits. Model 140 is based 
on the method of R.L.  Wiegel  (1975) and the libera-
tion model of A.M. Gaudin (1939), which allows for an  
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accurate description of the mineral liberation process 
during grinding. It operates with key parameters: the 
dilution factor with waste rock, the content of the valu-
able mineral, and the effective grain size of the mineral. 
An important advantage of Model 140 is that the com-
position by liberation classes does not depend on the 
size distribution, making it especially useful at the be-
ginning of the technological scheme. This corresponds 
to the actual operating conditions of Ukrainian MPPs. 

When applying Model 140 to the Valyavkinske deposit, 
specific characteristics of the local ores were taken into 
account, particularly the average magnetite inclusions 
and the typical mineralogical composition.

Description of model parameters. The modelling of 
the iron ore enrichment process was carried out based 
on data obtained using USIM PAC. Key model parame-
ters, including input and output variables, their ranges, 
and units of measurement, are presented in Table 1.

Parameter Description Range of values Units of measurement
Input parameters

solid_feed_percent Percentage of solids at the hydrocyclone inlet 25-35 %
water_add_mass_flow* Additional water flow rate 180-393 m3/h

feed_fe_percent Iron (Fe) content in the feed ore 36-38 %
Output parameters

concentrate_fe_percent Iron (Fe) content in the concentrate 52.5-55.5 %
tailings_fe_percent Iron (Fe) content in the tailings 12.6-12.7 %

concentrate_mass_flow Mass flow rate of the concentrate 55-60 t/h
tailings_mass_flow Mass flow rate of the tailings 40-45 t/h

Table 1. Key parameters of the iron ore enrichment process model

Notes: * – in fact, at this stage, the flow rate of additional water, despite being an input parameter, should be calculated
Source: developed by the author based on the data from O. Bogdanov (1984)

Modelling the distribution of iron content in incoming 
ore. The initial assumption for modelling the distribu-
tion of iron content in incoming ore was based on a 
normal distribution. This assumption is supported by 
the research of J.C.  Davis  (2002), who demonstrated 
that the natural variability of geological processes and 
the effects of ore mixing during extraction and trans-
portation contribute to the formation of a normal dis-
tribution of valuable component content. This approach 
is also reinforced by the central limit theorem, which is 
relevant for many geostatistical processes. Thus, adopt-
ing this assumption is justified and beneficial for mod-
elling iron ore enrichment processes.

To improve the fit of the data to a normal distri-
bution, various transformation methods were explored. 
Among them, mathematical transformations (power, 
logarithmic, exponential) were applied, as well as statis-
tical transformations such as the Box-Cox method (Box 
& Cox,  1964) and Yeo-Johnson method (Yeo & John-
son, 2000). Additionally, data processing methods were 
utilised, including outlier removal and the calculation 
of moving averages, as well as more complex approach-
es such as kernel density estimation (Silverman, 1986), 
principal component analysis (PCA), and rank normali-
sation. The chosen transformation method was applied 
to create a dataset with iron content distribution that 
closely aligns with a normal distribution. This provided 
the necessary foundation for further modelling of iron 
ore enrichment processes.

Generation of solid percentage values at the hydro-
cyclone inlet. The solid percentage at the hydrocyclone 
inlet (solid_feed_percent) is a key control parameter 

in the developed model. A comprehensive methodo-
logical approach was employed for its analysis and 
generation. Initially, a statistical investigation of the 
distribution of solid_feed_percent values in the prima-
ry dataset was conducted. The Kolmogorov-Smirnov 
tests (Massey,  1951) and Shapiro-Wilk tests (Shapiro 
& Wilk, 1965) were used to verify the normality of the 
distribution. The coefficient of variation, skewness, and 
kurtosis were also calculated to characterise the shape 
of the distribution, using methods described by T. Hast-
ie et al. (2009).

To fill in missing data, two methods were devel-
oped and compared: kernel density estimation (KDE) 
and random filling within quantile constraints (RFQL). 
The KDE method, described by B.W. Silverman  (1986), 
uses kernel density estimation to model the distribu-
tion of existing data. This method fills in gaps with 
random values within defined quantile constraints, 
preserving the statistical structure of the data while 
filling in the gaps. After generating data using both 
methods, a comparative analysis of their statistical 
characteristics was conducted. Mean values, data dis-
persion, distribution shape, and the presence of outliers 
were assessed using methods described in T. Hastie et 
al.  (2009). This analysis allowed for the identification 
of the most suitable method for filling in missing sol-
id_feed_percent values, ensuring the accuracy and 
representativeness of the data for further modelling. 
The chosen method was applied to create an extend-
ed dataset that includes both original and generated 
solid_feed_percent values. This approach ensures the 
preservation of the statistical structure of the original 
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data while simultaneously expanding the dataset for 
more accurate modelling of the enrichment process.

Determining additional water flow values. In the mod-
el structure, the parameters of solid percentage in the 
hydrocyclone (solid_feed_percent) and additional water 
flow (water_add_mass_flow) have a close yet nonline-
ar relationship. To determine this relationship and fill 
in missing water_add_mass_flow values, the following 
methodology was applied. Initially, an analysis of the 
primary dataset was conducted to study the nature of 
the relationship between solid_feed_percent and wa-
ter_add_mass_flow. It was established that this rela-
tionship is most accurately described by a second-de-
gree polynomial dependence. A subset of records with 
incomplete data containing values for both parameters 
was extracted from the full dataset. Four methods were 
chosen for training and prediction: Gradient Boosting 
(Friedman, 2001), Random Forest (Breiman, 2001), Line-
ar Regression (Hastie et al., 2009), and Ridge Regression 
(Hoerl & Kennard, 1970). The selected methods provide 
a variety of approaches to data modelling, allowing for 
the capture of both complex nonlinear and linear de-
pendencies. The models were trained on a sample of 
complete records. Quality metrics were calculated for 
each model, enabling a comparative analysis of the 
methods’ effectiveness. This approach allows for the 
identification of the most accurate method for filling in 
missing water_add_mass_flow values and ensures data 
integrity for further analysis of the enrichment process.

Determining dependant parameters. To determine 
the iron content in the concentrate and tails, as well 
as the mass flow rates of the concentrate and tails for 
incomplete records in the dataset, the following meth-
odology was applied. Initially, models were trained 
based on the complete dataset to fill in missing values 
in incomplete records. Six machine learning methods 
were used for this purpose: eXtreme Gradient Boost-
ing (XGBoost) (Chen & Guestrin, 2016), Support Vector 
Machines (SVR) with a Laplace kernel (Cortes & Vap-
nik, 1995), Random Forest (Breiman, 2001), Multilayer 
Perceptron (MLP) (Rumelhart  et al.,  1986), Ridge Re-
gression (RR) (Hoerl & Kennard,  1970), and k-Near-
est Neighbours Regression (kNN) (Altman,  1992). The 
choice of these methods is due to their ability to effec-
tively work with multiple input/output (MIMO) models 
and address approximation tasks. Subsequently, the pa-
rameters of each model were optimised to enhance its 
performance. Based on the optimised parameters, final 
models were formed for further use in the enrichment 
process. This approach ensures the creation of an ex-
tended dataset with complete data for further analysis 
and modelling of the enrichment process.

Results and Discussion
Development of the functional diagram. To better under-
stand the relationships between the model parameters 
and their roles in the iron ore beneficiation process, a 

functional diagram has been developed (Fig. 3). This di-
agram is based on the technological scheme of iron ore 
beneficiation with solid density control in the hydro-
cyclone (Fig. 1) and the iron ore beneficiation system 
based on Model 140 USIM PAC (Fig. 2). It visualises the 
main input and output variables, as well as their impact 
on various stages of the beneficiation process, integrat-
ing information from the previous diagrams into a more 
detailed functional model.

Mill Hydrocyclone Separator 

Control 

feed_fe_percent 
solid_feed_percent 

1. concentrate_fe_percent

2. tailings_fe_percent

3. concentrate_mass_flow

water_add_mass_flow 

Figure 3. Functional diagram  
of the relationships between the parameters  

of the iron ore enrichment process model
Source: author’s own development after processing the Model 
140 USIM PAC

The functional diagram (Fig. 3) illustrates the key var-
iables of the model and their interrelationships, which 
are crucial for understanding the iron ore beneficiation 
process. It demonstrates how the percentage of solids 
at the inlet of the hydrocyclone and the flow rate of ad-
ditional water affect its operation, which in turn impacts 
the efficiency of magnetic separation. J. Svoboda (2004) 
notes that these factors are critical for achieving opti-
mal results in the separation process, as they determine 
how effectively the useful components are separated.

The iron content in the incoming ore directly influ-
ences the quality of the obtained concentrate and tails, 
which is an important aspect for assessing the economic 
efficiency of beneficiation. This functional diagram not 
only summarises information from previous figures but 
also expands it by showing detailed interrelationships 
between parameters and their impact on each stage 
of the beneficiation process. As a result, it allows for a 
better understanding of how changes in one parameter 
can affect other aspects of the process. This knowledge 
is critically important for optimising the operation of 
the iron ore beneficiation system, as emphasised by 
T.J. Napier-Munn et al. (2014). Thus, the functional dia-
gram serves as an important tool for analysing and im-
proving technological processes in the mining industry.

The interrelationship between parameters is key to 
understanding the dynamics of the iron ore beneficia-
tion system. The parameter feed_fe_percent reflects the 
percentage of iron content in the ore being fed into 
the system. When this value is constant, the system re-
mains stable, but output parameters, such as concen-
trate quality and product yield, which constitute the  
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objective function, do not reach their optimal values. To 
optimise the process, it is necessary to adjust the pa-
rameter solid_feed_percent, which represents the per-
centage of solid material in the pulp. This parameter is 
regulated through water_add_mass_flow, i.e., the mass 
flow rate of water added to the system. Increasing or de-
creasing the water supply alters the pulp density, which 
directly affects the efficiency of the beneficiation pro-
cess. Thus, the correct adjustment of solid_feed_percent 
allows the system to achieve an optimal state, max-
imising concentrate quality while maintaining a high 
product yield. In the modelling process, solid_feed_per-
cent and feed_fe_percent are set within defined con-
straints, while other parameters are calculated based 
on the mathematical model of the process.

The choice of these parameters is driven by the 
primary objective of the work – generating a dataset 
that describes the nonlinear process of iron ore bene-
ficiation for further use in creating a predictive control 
system (Hodouin, 2009). The selected set of input, out-
put, and influencing parameters provides an adequate 
description of the process to achieve this goal. Deter-
mining the optimal size of the expanded dataset is a 
key stage in modelling iron ore beneficiation, ensuring 
a balance between data representativeness and com-
putational efficiency. This is critically important for the 
accuracy of the model, avoiding overfitting, and effec-
tively utilising resources.

As noted by B.A.  Wills & J.A.  Finch  (2015), opti-
mising the dataset size is an important aspect for 
achieving high model accuracy and preventing over-
fitting. This optimisation requires consideration of the  

specifics of the iron ore beneficiation process, particu-
larly the nonlinear relationships between parameters 
and the variability of process conditions. Methods for 
determining the optimal size may include learning 
curve analysis, cross-validation, and assessing the sta-
tistical significance of sample size increases, as de-
scribed in the work of G. James et al. (2021). The appli-
cation of these methods allows for the determination 
of the optimal dataset size that provides sufficient data 
representativeness for accurate modelling of the non-
linear iron ore beneficiation process while maintaining 
computational efficiency.

Determining the optimal size is an iterative process 
that requires constant balancing between accuracy and 
efficiency. Evaluation criteria may include model quality 
metrics (e.g., RMSE, R2) and computational costs. A typ-
ical dataset size for modelling beneficiation processes 
can range from several thousand to hundreds of thou-
sands of samples, depending on the complexity of the 
process and accuracy requirements (Napier-Munn  et 
al., 2014). It is also important to consider specific chal-
lenges associated with iron ore beneficiation data, such 
as the uneven distribution of ore quality classes and 
the potential presence of outliers, which may affect the 
representativeness of the sample.

Analysis of the results of the initial modelling and 
characterisation of the generated dataset. As a result of 
the preliminary modelling using the commercial soft-
ware USIM PAC (Brochot et al., 1995), 915 data records 
were generated. The analysis of the statistical parame-
ters of the primary dataset demonstrates the following 
features (Table 2).

solid_feed_
percent

water_add_
mass_flow

feed_fe_
percent

concentrate_
fe_percent

tailings_fe_
percent

concentrate_
mass_flow

tailings_
mass_flow

Key indicators of central tendency
Mean 29.76 272.82 36.65 54.29 12.65 57.62 42.37
Med 29.53 267.84 36.63 54.31 12.65 57.60 42.42

Dispersion indicators
Std dev 2.97 62.26 0.79 0.70 0.03 1.21 1.18

Min 25.01 180.44 35.30 52.67 12.60 54.88 39.87
Max 34.99 393.80 38.02 55.86 12.70 60.18 44.97
CV 0.1000 0.2282 0.0216 0.0128 0.0020 0.0210 0.0279

Distribution shape indicators
Kurtosis -1.24 -1.13 -1.24 -0.70 -1.18 -0.82 -0.86

Skewness 0.09 0.28 0.06 -0.01 0.05 0.01 -0.02
Normality tests

Shapiro-Wilk 2.21E-17 2.72E-18 6.20E-17 2.12E-06 4.25E-15 3.49E-08 6.04E-09

Table 2. Statistical characteristics of the initial dataset

The solid phase content in the hydrocyclone liq-
uid (solid_feed_percent) is characterised by a mean 
value of 29.76% and a median of 29.53%, indicating 
a typical level of solid phase content and a relatively  

symmetrical distribution of the data. The standard devi-
ation of 2.97 and the coefficient of variation of 0.1000 
indicate moderate variability of the parameter. The 
range of values from 25.01 to 34.99% demonstrates 

Notes: the most significant indicators were taken for the fields
Source: author’s own calculations when processing the data



Volovetskyi

Journal of Kryvyi Rih National University, Vol. 22, No. 2, 2024
17

significant amplitude of fluctuations. The skewness co-
efficient of 0.09 indicates slight right-side skewness, 
while the kurtosis coefficient of -1.24 suggests a flatter 
distribution compared to normal. These characteristics 
indicate a stable, yet not static, process of solid phase 
feeding, with certain distribution peculiarities that 
should be considered in further analysis and modelling.

The water flow rate (water_add_mass_flow) has a 
mean value of 272.82 and a median of 267.84, indicat-
ing slight right-side skewness of the distribution. The 
high standard deviation of 62.26 and the coefficient 
of variation of 0.2282 indicate significant variability of 
this parameter. The wide range from 180.44 to 393.80 
demonstrates substantial fluctuations in water flow, 
which may be related to different operating modes of 
the hydrocyclone or changes in the input raw material.

Iron content indicators (feed_fe_percent, concen-
trate_fe_percent, tailings_fe_percent) demonstrate high 
stability. Low coefficients of variation (0.0216, 0.0128, 
0.0020 respectively) and narrow ranges of values indi-
cate the stability of the enrichment process and the ef-
fectiveness of separating iron-containing components. 
The closeness of the mean values and medians for these 
indicators suggests the symmetry of their distributions, 
which is a sign of a stable technological process.

The mass flows of concentrate and tailings (con-
centrate_mass_flow, tailings_mass_flow) are character-
ised by low coefficients of variation (0.0210 and 0.0279 
respectively), indicating the stability of the separation 
process. The proximity of the mean values and medi-
ans, as well as relatively narrow ranges of values, con-
firm the stability of mass flows, which is an important  

indicator of the hydrocyclone’s operational efficiency. 
The analysis of the distribution shape shows that all 
variables have negative kurtosis coefficients (ranging 
from -0.70 to -1.24), indicating a platykurtic distribu-
tion. This means that the distributions have a flatter 
shape compared to a normal distribution, which may 
indicate greater uniformity of values in the central part 
of the distribution. The skewness coefficients are close 
to zero (ranging from -0.02 to 0.28), indicating relative-
ly symmetrical distributions for all parameters.

The results of the Shapiro-Wilk normality tests 
(Shapiro & Wilk, 1965) show very low P-values for all 
variables. This indicates a statistically significant devi-
ation from normal distribution for all studied parame-
ters. Such results may be a consequence of the specifics 
of the technological process or the presence of certain 
constraints or controls over the parameters.

Overall, the analysis of statistical characteristics 
demonstrates a stable distribution of most studied 
indicators with moderate variability. Such results cor-
respond to typical observations for technological pro-
cesses, as noted by D.C. Montgomery (2021) in his work 
on statistical methods analysis in industry. Deviations 
from normal distribution and platykurticity are im-
portant features that need to be considered in further 
analysis and modelling of the data. These characteris-
tics may influence the choice of statistical analysis and 
modelling methods, as well as the interpretation of the 
results of iron ore enrichment process studies. A visual 
analysis of the statistical parameters of the primary da-
taset, presented through histograms and distribution 
density curves, is shown in Figure 4.

a b

e f g

c d

Figure 4. Histograms and density distribution curves of the main parameters of the primary dataset
Notes: a – solid phase content in the hydrocyclone liquid; b – water flow rate; c – iron content in the feed ore; d – iron content 
in the concentrate; e – iron content in the tailings; f – mass flow rate of the concentrate; g – mass flow rate of the tailings Bar 
chart – histogram, line graph – density curve of the corresponding parameter
Source: author’s own development based on conducted calculations

Modelling the distribution of iron content in the in-
coming ore. In the process of modelling the distribution 
of iron content in the incoming ore, an initial assump-

tion was made regarding the normal distribution of the 
data. This assumption was based on theoretical consid-
erations and widely accepted practises in the field of 
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ore enrichment. However, as previously demonstrated 
(Table 2; Fig. 4), the analysis of the primary model data 
revealed significant deviations from the expected nor-
mal distribution. The primary cause of this deviation was 
identified as the manual entry of data for the relevant 
variable, which led to an uneven distribution. Conse-
quently, the task arose to adjust the distribution of this 
field to normal, which is critically important for the ac-
curacy of further modelling of the enrichment process.

To address this issue, a number of distribution 
correction methods were proposed and analysed. 
Among them were: logarithmic transformation, ex-
ponential transformation, the Box-Cox method (Box 
& Cox, 1964), the moving average (MA) method, Ker-
nel Density Estimation (Rosenblatt, 1956), and Prin-
cipal Component Analysis (PCA) (Pearson, 1901). The 
results of applying these methods are presented in 
Figure 5.

Figure 5. Results of transformation using different methods
Notes: a – Log; b – Exp; c – Box-Cox; d – MA; e – KDE; f – PCA. Distribution of diagrams in the group from left to right, top to 
bottom: 1. Histograms of the original (orange) and modified (blue) distributions; 2. Q-Q plot after modification; 3. Density curves 
of the original (orange) and modified (blue) distributions
Source: author’s own development based on conducted calculations
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Based on a comparative analysis of quality met-
rics (Table  3), the moving average method with au-
tomatic parameter optimisation was selected. This 
method provided the best balance between achiev-
ing normality of the distribution and preserving key 
characteristics of the original data. Specifically, the MA 

method showed optimal results across four of the five 
key criteria: multiplier, skewness, kurtosis, and preser-
vation of the original data. Although the method did 
not achieve optimal results for P-value, automatic op-
timisation helped minimise undesirable effects of the 
transformation.

Method Multiplier P-value Skewness Kurtosis Original data percentage

Optimal ≤10 0.05 0.5 0.5 ≥10%

Log 3 0.0950 0.0309 0.1721 25.03%

Exp 1 0.2364 -0.0065 0.2006 50%

Box-Cox 8 0.8050 -0.0009 -0.1157 11.11%

MA 2 0.1725 0.0265 0.1731 33.38%

Table 3. Comparison of data transformation methods

Notes: the first line is the optimal indicators that needed to be achieved during the automatic search for parameters
Source: author’s own calculations when processing the data
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The application of the chosen method allowed for 
the creation of a new dataset, which includes 730 com-
plete and 2,026 partially filled records, demonstrating 
an approximate Gaussian distribution of iron content 
(the filled data column feed_fe_percent with 2,756 
values). This created a reliable foundation for further 
analysis and modelling of the enrichment process. It 
is important to note that correcting the distribution of 
iron content in the incoming ore is critical for the accu-
racy of the entire enrichment model. This enables more 
accurate forecasting of process outcomes and optimi-
sation of control parameters, ultimately enhancing the 
efficiency of the entire iron ore enrichment process.

Generation of solid feed percentage values at the hy-
drocyclone inlet. The solid feed percentage at the hy-
drocyclone inlet (solid_feed_percent) is a key control 
parameter in automated iron ore beneficiation sys-
tems. B.A. Wills & J.A. Finch (2015) emphasise that this  

parameter significantly affects the efficiency of the ben-
eficiation process and the optimisation of target indica-
tors, such as concentrate quality and product yield. A 
statistical analysis of the primary dataset revealed that 
the distribution of solid_feed_percent has a flat struc-
ture. This feature creates favourable conditions for ex-
ploring various operating modes of the system (Fig. 4). 
Two methods were employed to fill in the missing data: 
Kernel Density Estimation (KDE) (Rosenblatt, 1956) and 
Random Filling with Quantile Limits (RFQL) (Hastie et 
al., 2009). The results of the transformation of the sol-
id_feed_percent distribution using these methods are 
presented in Figure 6, which visually demonstrates the 
differences between the KDE and RFQL methods: the 
KDE method provides a smoother distribution, while 
RFQL better preserves the structure of the original data. 
This visual comparison is complemented by a detailed 
analysis of statistical indicators presented in Table 4.

Figure 6. Transformation of the solid_feed_percent distribution due to gap filling
Notes: a – use of the KDE method; b – use of the RFQL method. Distribution of diagrams in the group from left to right, top 
to bottom: 1. Histograms of the original (red) and modified (orange) distributions; 2. Density curves of the original (blue) and 
modified (red) distributions; 3. Box plot of the value distribution; 4. QQ plot of the residuals
Source: author’s own development based on conducted calculations

Metric RFQL KDE Difference
Mean 29.8897 29.8905 0.0008

Std dev 2.8954 3.0256 0.1303

Med (50%) 29.8870 29.8740 -0.0130

25th percentile 27.3300 27.2000 -0.1300

75th percentile 32.3650 32.5003 0.1352

Skewness 0.0329 0.0472 0.0143

Kurtosis -1.1982 -1.2442 -0.0460

Table 4. Comparison of statistical indicators of missing data imputation methods

Source: author’s own calculations in data processing

a b
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The data analysis in Table 4 shows that both meth-
ods demonstrate similar results regarding means, dis-
persion, and skewness. However, the RFQL method 
proved to be more stable, with a lower tendency to 
create outliers. While KDE offers a broader coverage 
of possible values, RFQL better maintains the realis-
tic characteristics of the process, which is critical for 
the accuracy of the model, as discussed in the work of 
T. Hastie et al. (2009). The choice of the RFQL method 
for further work is justified by its ability to preserve the 
statistical structure of the original data, which is par-
ticularly important for modelling complex technolog-
ical processes. This method allows for the generation 
of data that not only fills in gaps but also retains the 
characteristics of the actual beneficiation process, as 
noted by A. Gelman & J. Hill  (2006). It is important to 
note that changes in the solid percentage significantly 
impact the efficiency of the beneficiation process, and 
optimal control of this parameter can lead to improved 
concentrate quality and reduced losses of valuable 
components in the tails.

Determining the values of additional water con-
sumption. The parameters of solid feed percentage 
(solid_feed_percent) and additional water flow rate 
(water_add_mass_flow) were found to be non-linearly 
interrelated. Solid_feed_percent serves as an indicator 
of the system’s control mode, while water_add_mass_
flow regulates this mode (Wills & Finch, 2015). An anal-
ysis of the initial dataset confirmed the non-linearity of 
the relationship between solid_feed_percent and wa-
ter_add_mass_flow, which is most accurately described 
by a second-degree polynomial dependence. From 730 
complete records containing values for both parame-
ters, a model was developed to predict water consump-
tion for 2,026 records lacking this value. Four machine 
learning methods were applied for modelling: Gradi-
ent Boosting (Friedman,  2001), Random Forest (Bre-
iman,  2001), Linear Regression, and Ridge Regression 
(Hastie et al., 2009), providing a variety of approaches 
to data modelling. The effectiveness of each method 
was evaluated using key metrics (Table 5) and visual-
ised in Figure 7.

Method MSE MAE R2

Gradient Boosting 0.9691 0.7396 0.9997

Random Forest 0.7237 0.6129 0.9998

Linear Regression 1.6805 1.0276 0.9996

Ridge 4.1035 1.5272 0.9989

Table 5. Comparison of the effectiveness of machine learning methods for modelling

Source: author’s own calculations in data processing

The analysis of results showed that the Random 
Forest method demonstrated the best performance 
with the lowest MSE and MAE values, as well as the 
highest R2 (James et al., 2021). This indicates its high ac-
curacy and ability to effectively model complex non-lin-
ear dependencies between the parameters of the en-
richment process. The obtained results have significant 
practical implications for optimising the enrichment 
process. They allow for more accurate forecasting and 
control of the solid percentage at the inlet of the hy-
drocyclone, which is crucial for enhancing the efficien-
cy of the entire iron ore enrichment process. B.A. Wills 
& J.A. Finch (2015) emphasise in their work that precise 
control of this parameter can significantly impact the 
quality of the final product and reduce processing costs.

Definition of dependant parameters. To search for 
missing values in the fields of iron content in the con-
centrate, iron content in the tails, mass flow rate of the 
concentrate, and mass flow rate of the tails, an approach 
is employed that utilises a complete dataset to train 
machine learning algorithms that fill in the missing 

values. This enhances the integrity of the extended da-
taset, which is critically important for further analysis 
and modelling of enrichment processes. Six machine 
learning methods were selected for this purpose: eX-
treme Gradient Boosting (Chen & Guestrin, 2016), Sup-
port Vector Machines with Laplace kernel (Cortes & Va-
pnik, 1995), Random Forest (Breiman, 2001), Multilayer 
Perceptron (Goodfellow et al., 2016), Ridge Regression 
(Hoerl & Kennard,  1970), and k-Nearest Neighbours 
Regression (Altman, 1992). These methods are distin-
guished by their ability to effectively solve approxima-
tion tasks using MIMO models. Each of these methods 
was optimised to ensure maximum efficiency, allow-
ing for the creation of models for accurate modelling 
of technological enrichment processes. The analysis 
results presented in Table 6 show that the Multilayer 
Perceptron demonstrates the best performance. This 
model has the lowest error values and the highest coef-
ficient of determination R2, indicating its high accuracy 
and effectiveness in generalising data, as detailed by I. 
Goodfellow et al. (2016) in their work on deep learning.
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Additionally, the SVR method with Laplace kernel 
also showed competitive results. With a high R2 value 
and low error values, SVR is a reliable alternative for 
modelling, especially when neural networks are over-
ly complex or resource-intensive. This method offers 
a balanced solution between model complexity and 
accuracy, making it very useful for real production 
conditions. Figure  8 illustrates the residuals when  

using machine learning methods. MLP demonstrates 
the most consistent results without significant devia-
tions, while SVR also proved to be stable, confirming 
its reliability. MLP is the optimal choice for high-pre-
cision solutions to complex enrichment technological 
tasks, while SVR with Laplace kernel can be a practical 
option for situations where a combination of efficien-
cy and simplicity is required.

Figure 7. Quality metrics for forecasting using different forecasting methods
Notes: a – Gradient Boosting; b – Random Forest; c – Linear Regression; d – Ridge. Distribution of diagrams in the group from 
left to right, top to bottom: 1. Actual and forecasted values; 2. Distribution of residuals; 3. Residuals of forecasted vs. values; 
4. QQ plot of residuals
Source: author’s own development based on the calculations performed

Method MSE RMSE MAE R2

XGB 0.0021 0.0460 0.0288 0.9977

SVR 0.0015 0.0383 0.0188 0.9989

RF 0.0032 0.0564 0.0336 0.9973

MLP 0.0013 0.0361 0.0208 0.9990

RR 0.0016 0.0396 0.0247 0.9986

kNN 0.0030 0.0540 0.0329 0.9972

Source: author’s own development based on the calculations performed

a b

c d

Table 6. Comparison of metrics for mathematical learning systems



Comprehensive methodology for creating enhanced datasets...

2222 Journal of Kryvyi Rih National University, Vol. 22, No. 2, 2024

a b

e f

c d

Figure 8. Visualisation of residuals when using different learning methods
Notes: a – XGBoost; b – Support Vector Regression; c – Random Forest; d – Perceptron Neural Network; e – Ridge Regression; f – 
k-Nearest Neighbors Regression. Fields in the group from left to right, top to bottom: concentrate_fe_percent, tailing_fe_percent, 
concentrate_mass_flow, tailing_mass_flow
Source: author’s own development based on the calculations performed

Analysis of extended data. As a result of working 
with the data, an extended dataset was obtained with 
several modified distributions. The total number of re-
cords in the new dataset amounted to 2,756 records, 
which was determined by the initial requirements for 

automatic parameter selection when working with the 
feed_fe_percent field. Further expansion of the data 
array can be conducted through an iterative cycle ac-
cording to the developed methodology. The statistical 
indicators of the new dataset are presented in Table 7.
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The main indicators of central tendency, such as 
the mean and median, remained virtually unchanged 
for most indicators, indicating the preservation of the 
overall data structure. However, slight changes were 
observed in the indicators of water_add_mass_flow and 
concentrate_mass_flow, which may be related to the 
modification of the distribution of these fields. The anal-
ysis of dispersion indicators revealed that the standard 
deviation decreased for most indicators, indicating a re-
duction in data spread. The coefficients of variation also 
decreased, suggesting an increase in data homogeneity.

The study of distribution shape indicators demon-
strated that the coefficients of excess and skewness un-
derwent slight changes, indicating the preservation of 
the overall shape of the distribution. However, for some 
indicators, such as feed_fe_percent, concentrate_fe_per-
cent, and tailings_fe_percent, a decrease in excess was 

observed, which may indicate a convergence towards a 
normal distribution. The results of normality tests, par-
ticularly the Shapiro-Wilk test, indicate that the distri-
bution of most indicators remains non-normal. However, 
for some indicators (concentrate_fe_percent, tailings_
fe_percent), a slight approach to normality is observed.

In general, it can be concluded that the modifica-
tion of the distribution of certain fields led to minor 
changes in the statistical characteristics of the dataset. 
The main indicators of central tendency remained vir-
tually unchanged, while the dispersion and shape indi-
cators experienced slight improvements. This suggests 
that the overall data structure has been preserved, but 
their homogeneity and approach to normal distribution 
have somewhat increased. The visual distribution of the 
resulting dataset, presented through histograms and 
density distribution curves, is shown in Figure 9.

solid_feed_
percent

water_add_
mass_flow

feed_fe_
percent

concentrate_
fe_percent

tailings_fe_
percent

concentrate_
mass_flow

tailings_
mass_flow

Key indicators of central tendency
Mean 29.86 270.02 36.65 54.28 12.65 57.65 42.34
Med 29.82 261.65 36.66 54.28 12.65 57.7 42.32

Dispersion indicators
Std dev 2.86 59.66 0.54 0.55 0.02 0.91 0.87

Min 25.01 180.58 35.3 52.66 12.6 54.88 39.98
Max 34.96 393.8 38.02 55.86 12.7 60.09 44.96
CV 0.0956 0.221 0.0148 0.0101 0.0014 0.0157 0.0206

Distribution shape indicators
Kurtosis -1.18 -1.03 0.01 -0.27 -0.04 -0.16 -0.1

Skewness 0.04 0.35 0.04 0.05 0.06 -0.14 0.11
Normality tests

Shapiro-Wilk 7.51E-28 1.82E-30 5.55E-10 7.06E-03 4.82E-07 1.64E-04 1.06E-03

Table 7. Statistical characteristics of the resulting dataset

Source: author’s own development based on the calculations performed
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Figure 9. Histograms and density curves of the data distribution of the main parameters of the primary dataset
Notes: a – solid phase content in the hydrocyclone liquid; b – water flow rate; c – iron content in the feed ore; d – iron content 
in the concentrate; e – iron content in the tailings; f – mass flow rate of the concentrate; g – mass flow rate of the tailings. Bar 
chart – histogram, line graph – density curve of the corresponding parameter
Source: author’s own development based on the calculations performed
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As a result of the conducted analysis, an extended 
dataset was formed while preserving the overall struc-
ture of the original data. The modification of the dis-
tributions of certain parameters led to minor changes 
in the indicators of central tendency and an improve-
ment in the homogeneity of the data. The presented 
statistical characteristics and visualisations confirm 
the increased proximity of the distributions to normal-
ity. The developed methodology for creating extended 
datasets for modelling magnetic separation of iron ore 
demonstrates significant potential for enhancing en-
richment processes in the mining industry. The hybrid 
method used in the study has the potential to integrate 
aspects such as modularity, which, as defined by S. Sha-
lev-Shwartz & S. Ben-David (2014), allows for the up-
dating of components without the need to rebuild the 
system, ensuring adaptation to new requirements.

The use of the USIM PAC simulator for generating 
the primary dataset aligns with the approach described 
in the work of T.J. Napier-Munn et al.  (2014), who em-
phasise the importance of applying specialised simula-
tors for modelling enrichment processes. However, un-
like their study, this work identified deviations from the 
expected Gaussian distribution, highlighting the neces-
sity of validating theoretical models against real data, 
as noted by B.A. Wills & J.A.  Finch  (2015). The appli-
cation of the moving average method with automatic 
parameter optimisation for data distribution correction 
is an innovative approach that has not been widely cov-
ered in previous research. This method demonstrated 
better results compared to traditional data transfor-
mation methods, such as logarithmic and exponential 
transformations, as described in the work of T.  Hast-
ie et al. (2009), which discusses various data processing 
techniques to improve their quality.

The use of the Random Forest with Quantile Limits 
method for filling in data gaps shows similarities to the 
approach proposed by L. Breiman (2001), but with addi-
tional constraints to ensure the physical validity of the 
data. This enhancement allows for better preservation 
of the characteristics of the actual enrichment process, 
which is a critical aspect emphasised by A. Gelman & 
J. Hill (2006). A comparison of different machine learning 
methods for modelling the relationships between pa-
rameters of the enrichment process revealed the supe-
riority of the multilayer perceptron over other methods. 
This aligns with the findings of A. Karpatne et al. (2017), 
whose authors also noted the effectiveness of neural 
networks for modelling complex nonlinear processes 
in the mining industry. However, unlike their work, this 
study also found high effectiveness in the SVR method 
with a Laplace kernel, which may serve as a useful alter-
native in conditions of limited computational resources.

The developed methodology for creating extend-
ed datasets corresponds to the current trends of In-
dustry 4.0, as mentioned in the research by H. Lasi et 
al.  (2014). It provides modularity in the approach,  

allowing for the integration of new methods and data 
sources (Khaleghi et al., 2013). It is important to note 
that this research focuses on the specifics of Ukraini-
an iron ore deposits, particularly the Kryvyi Rih basin, 
which distinguishes it from many international studies. 
This allows for consideration of local geological con-
ditions and technological features, which are critical 
for the practical application of the results. Overall, the 
obtained results lay the foundation for further devel-
opment of automated control systems for enrichment 
processes, aligning with the research directions out-
lined by P.  Kadlec  et al.  (2009) and I.E.  Grossmann & 
G. Guillén-Gosálbez (2010), who detail the importance 
of automation in managing technological processes 
and its impact on production efficiency. In particular, a 
promising direction is the integration of the developed 
methodology with decision-making systems and ener-
gy consumption optimisation.

Compared to existing studies, the developed meth-
odology offers a comprehensive approach that com-
bines physical modelling, statistical methods, and 
machine learning. This allows for overcoming the limi-
tations associated with the lack of real production data 
while maintaining the physical validity of the model. 
Such an approach opens new opportunities for optimis-
ing iron ore enrichment processes and enhancing pro-
duction efficiency in the context of Ukrainian mining 
and enrichment plants.

Conclusions
As a result of the research, a comprehensive method-
ology for creating extended datasets for modelling the 
magnetic separation process of iron ore has been de-
veloped, taking into account the specifics of Ukrainian 
deposits and the limitations of available information. 
Key achievements include: the creation and validation 
of an extended dataset based on the technological 
simulation USIM PAC; the development of a method for 
correcting data distribution with automatic parameter 
optimisation; and a comparative analysis of machine 
learning methods, where the multilayer perceptron 
demonstrated the highest prediction accuracy. The sci-
entific novelty of the research lies in the development 
of an innovative methodology that combines techno-
logical simulation, statistical data correction methods, 
and modern machine learning algorithms for modelling 
the processes of magnetic separation of iron ore. This 
approach allows overcoming the limitations associated 
with the lack of real production data while maintaining 
the physical validity of the models.

The work provides opportunities to enhance pro-
duction efficiency and product quality at Ukrainian 
mining and beneficiation plants. The developed meth-
odology creates conditions for more precise tuning of 
technological processes, which is particularly impor-
tant in the early stages of design and in conditions 
of limited access to technological data. Furthermore, 
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this methodology represents a significant step to-
wards improving the efficiency and competitiveness of 
Ukrainian MPPs. This innovative approach opens new 
possibilities for optimising production and enhancing 
product quality in the field of iron ore beneficiation, 
contributing to the overall progress of the industry and 
strengthening Ukraine’s position in the global iron ore 
raw materials market.

Nevertheless, an important direction for further re-
search is the integration of the developed models into 
comprehensive automated control systems for techno-
logical processes, which will promote an increase in 
the level of automation and optimisation of manage-
ment in enterprises. The application of deep learning 
methods to improve the accuracy of predicting benefi-
ciation process parameters will enable the creation of 
more precise and reliable models for decision-making, 

while the development of adaptive control algorithms 
and optimisation of energy consumption will contrib-
ute to cost reduction and enhanced environmental 
safety in production.
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Анотація. Дослідження пропонує інноваційний підхід до створення розширених наборів даних для 
моделювання магнітної сепарації залізної руди, що є важливим для підвищення ефективності та автоматизації 
процесів збагачення в гірничодобувній промисловості. Мета дослідження полягала в розробці методології 
створення розширених наборів даних для моделювання магнітної сепарації залізної руди, яка враховує 
специфіку українських родовищ та дозволяє генерувати репрезентативні дані в умовах обмеженості реальних 
виробничих даних шляхом інтеграції фізичного моделювання з методами машинного навчання. Методи 
дослідження: моделювання з використанням математичного навчання, симуляція на основі фізичних процесів, 
статистичний аналіз. У дослідженні розглянуто використання симулятора USIM PAC для моделювання системи 
збагачення залізної руди та адаптацію даних для магнітного збагачення, що забезпечує точність моделювання 
технологічних процесів збагачення. Застосуванням симулятору отримано набір даних фізичного моделювання 
частини процесу збагачення на основі даних Валявкінського родовища. Проаналізовано первинне 
моделювання набору даних, включаючи статистичні характеристики, форму розподілу та тести на нормальність 
для виявлення полів, що потребують корекції. На основі результатів аналізу визначено конкретні вимоги до 
розподілу даних у новому датасеті, який має бути сформований для подальшого використання. Відповідно 
до цих вимог реалізовано декілька математичних моделей, що відтворюють задані критерії та параметри. 
Для кожного поля даних ретельно підібрано найкращу модель та виконано корекцію датасету за її даними, 
щоб максимально наблизити розподіл до бажаного. Для отриманих скоригованих даних проведена всебічна 
валідація результатів з акцентом на збереженні фізичної достовірності даних та їх відповідності реальним 
процесам збагачення. Проведено детальний аналіз відкоригованих даних, а також статистичні характеристики 
результуючого датасету, в результаті чого підтверджена ефективність розробленої комплексної методології 
моделювання та адаптації даних для магнітного збагачення залізної руди. Методологія має практичну цінність 
завдяки інноваційному підходу до створення розширених наборів даних для моделювання магнітної сепарації 
залізної руди, що підвищує ефективність і автоматизацію процесів збагачення, враховуючи специфіку родовищ 
та генеруючи репрезентативні дані в умовах обмеженості реальних даних

Ключові слова: нелінійне моделювання збагачення; керування сепарацією; машинне навчання в збагаченні; 
автоматизація збагачувальних процесів; симуляція технологічних параметрів
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