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Abstract. The studypresentsaninnovative approachto creating extended datasets for modelling magneticseparation
of iron ore, which is crucial for enhancing efficiency and automating enrichment processes in the mining industry.
The aim of the research was to develop a methodology for creating extended datasets for modelling magnetic
separation of iron ore that takes into account the specifics of Ukrainian deposits and allows for the generation of
representative data in conditions of limited real production data by integrating physical modelling with machine
learning methods. Research methods: modelling using mathematical learning, simulation based on physical
processes, statistical analysis. The study examined the use of the USIM PAC simulator for modelling the iron ore
enrichment system and adapting data for magnetic enrichment, ensuring the accuracy of modelling technological
enrichment processes. The simulator was used to obtain a dataset from physical modelling of part of the enrichment
process based on data from the Valyavkinske deposit. Primary modelling of the dataset was analysed, including
statistical characteristics, distribution shape, and normality tests to identify fields requiring correction. Based on
the analysis results, specific requirements for data distribution in the new dataset to be formed for further use were
established. In accordance with these requirements, several mathematical models were implemented to reproduce
the specified criteria and parameters. For each data field, the best model was carefully selected, and the dataset
was corrected based on its data to bring the distribution as close as possible to the desired one. Comprehensive
validation of the resulting corrected data was conducted, emphasising the preservation of the physical validity
of the data and their correspondence to real enrichment processes. A detailed analysis of the corrected data
was performed, as well as the statistical characteristics of the resulting dataset, confirming the effectiveness of
the developed comprehensive methodology for modelling and adapting data for magnetic enrichment of iron
ore. The methodology holds practical value due to its innovative approach to creating extended datasets for
modelling magnetic separation of iron ore, enhancing the efficiency and automation of enrichment processes
while considering the specifics of deposits and generating representative data in conditions of limited real data

Keywords: nonlinear modelling of enrichment; separation control; machine learning in enrichment; automation of
enrichment processes; simulation of technological parameters

Introduction
The relevance of this work is determined by the neces-  data, especially for Ukrainian deposits. The specif-
sity to improve the processes of modelling magnetic ics of Ukrainian iron ore deposits, particularly in the
separation of iron ore under conditions of limited real  Kryvyi Rih basin, require the development of special
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extraction and processing technologies. The develop-
ment of a comprehensive methodology for creating ex-
tended datasets will help overcome these limitations,
taking into account local geological conditions and en-
suring more effective modelling of the magnetic sepa-
ration process. This will contribute to the optimisation
of enrichment processes, improvement of concentrate
quality, and reduction of energy consumption in the
mining industry of Ukraine.

Current trends in modelling magnetic separation
are characterised by a comprehensive approach that in-
tegrates various computational and analytical methods.
These approaches encompass a wide range from classi-
cal numerical methods to advanced techniques in ma-
chine learning and multiphysics modelling. Significant
progress has been made in developing methods that
allow for the simultaneous consideration of complex
interactions between different physical processes in-
herent in magnetic separation. Concurrently, optimisa-
tion methods for control are being developed, aimed at
enhancing the efficiency of enrichment processes. The
integration of these diverse approaches creates a pow-
erful foundation for developing adaptive and high-pre-
cision models capable of functioning under conditions
of limited experimental data and accounting for the
specifics of local conditions.

In the study by VV. Shenoy et al. (2024), the influ-
ence of the magnetic field on flow behaviour in a step
geometry is examined. Using modern computational
fluid dynamics methods, particularly the open-source
package OpenFOAM, the authors investigated the in-
teraction between magnetic forces and geometric fac-
tors affecting flow characteristics. The study revealed
important patterns in flow behaviour under the influ-
ence of the magnetic field and geometry. The proposed
mathematical models allow for the prediction of key
flow parameters under various conditions. The results
of this CFD work have the potential for application in a
wide range of engineering tasks related to magnetohy-
drodynamic flows and boundary layer control.

In the work by R. Chowdhury et al. (2024), a compre-
hensive method for optimising medium parameters for
effective material separation in a hydrocyclone separa-
tor is proposed, combining theoretical approaches and
CFD modelling. The use of CFD allowed for a detailed
analysis of the impact of medium density on the sepa-
ration of PVC and PET particles, visualising and assess-
ing key process parameters. Although the study focused
on plastics, the methodology can be applied in various
fields, including magnetic enrichment, where consider-
ation of medium and particle properties is critical for
optimising separation.

M.E. Kinaci et al. (2020) investigated the process
of indirect reduction of iron ore in fluidised beds us-
ing the discrete element method (DEM) in conjunction
with computational fluid dynamics. The developed
model can be applied to simulate the processes of iron
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ore reduction in industrial reactors, optimising pro-
cess parameters and developing new iron production
technologies. J. Liu et al. (2021) studied the magnetic
separation process in an aerodynamic drum magnet-
ic separator (ADMS) using the finite element method
and multiphysics modelling in COMSOL Multiphysics
software. The modelling of the magnetic field, airflow,
and particle movement in the separator was conducted.
The influence of various parameters (air velocity, mag-
netic field intensity, positioning of magnetic poles) on
the separation efficiency of magnetic and non-magnet-
ic particles was demonstrated. The simulation results
were verified through experimental measurements and
calculations. The proposed model allows for the predic-
tion of particle trajectories and extraction probabilities
under different conditions, which can be useful for pre-
cise control of the magnetic separation process using
combined force fields.

Moreover, there is a growing interest in the appli-
cation of machine learning methods, particularly con-
volutional neural networks (CNNs), which open new
opportunities for predicting separation efficiency un-
der complex conditions. Research conducted by Y. Li et
al. (2022) demonstrates the successful use of CNNs for
modelling grinding processes in ball mills, based on ex-
ternally measured process variables. These approach-
es can be adapted for magnetic separation, enhancing
prediction accuracy and reducing the need for large
volumes of experimental data. The implementation of
machine learning fosters the development of hybrid
models that combine theoretical knowledge with data
from discrete element method simulations, providing
more effective and rapid modelling of complex systems.

N. Yang et al. (2022) analysed the development of
modelling methods for mineral deposits, emphasising
the transition to three-dimensional digital models and
the importance of understanding ore formation process-
es. The authors highlighted the application of machine
learning methods, particularly convolutional neural
networks, for predicting hidden deposits. They stressed
the issue of data scarcity and proposed the use of ad-
vanced machine learning techniques to process incom-
plete data, underscoring the importance of integrating
expert knowledge. Despite progress in modelling mag-
netic separation, there remains a need for the devel-
opment of comprehensive methodologies for creating
accurate models under conditions of limited real data.

V. Morkun et al. (2020) investigated the identifica-
tion of nonlinear dynamic enrichment objects using a
second-order Volterra model and its projection onto
orthonormal Laguerre basis functions. This potential-
ly impacts the improvement of modelling accuracy for
iron ore enrichment processes, reducing model com-
plexity and sensitivity to noise. O. Porkuian et al. (2019)
considered the development of a predictive control
system for the iron ore enrichment process based on
a hybrid Hammerstein model. The model combines a
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fuzzy nonlinear block and a crisp linear dynamic block
for effective approximation of nonlinear, dynamic, and
non-stationary properties of enrichment line objects.
The proposed algorithms ensure rapid real-time iden-
tification and optimal control considering constraints,
leading to improved concentrate quality and reduced
energy consumption.

S.Rajendran & CV.G.K.Murty (2023) reviewed mod-
ern approaches to numerical modelling of enrichment
processes for coal, iron ore, chromite, and bauxite. This
allows for a better understanding of key process varia-
bles affecting the efficiency of enrichment equipment
and the potential for optimising technological oper-
ations. The work provides tools for predicting the be-
haviour of complex mineral enrichment systems, con-
tributing to the development of more effective mineral
processing methods.

The aim of this research was to develop an inno-
vative methodology for creating extended datasets for
modelling magnetic separation of iron ore, taking into
account the specifics of Ukrainian deposits and the Llim-
itations of available information.

Materials and Methods

Justification for the choice of modelling method. An anal-
ysis of existing methods for modelling the magnetic
separation process revealed the necessity of applying
a comprehensive approach to address the task at hand.
Considering the complexity and non-linearity of the
magnetic separation process, as well as the specifics
of the available data and tools, particularly USIM PAC -
a commercial simulator for technological processes
developed by CASPEO (Brochot et al., 1995) - and the
Python Spyder IDE development environment (n.d.),
the decision was made to employ a hybrid modelling
method (McCoy & Auret, 2019). The main arguments in
favour of choosing the hybrid method are as follows:

1. Complexity of data processing. The proposed
hybrid method combines physical modelling of mag-
netic separation with machine learning techniques. In-
itially, data is obtained from a model built on physical
principles using the USIM PAC technological process
simulator. This model is based on fundamental physi-
cal laws and empirical relationships that describe the
magnetic separation process. Subsequently, this data is
sequentially expanded and restructured using machine
learning algorithms. In particular, neural networks are
employed to uncover hidden patterns, clustering meth-
ods are used to group similar results, and regression al-
gorithms are applied to predict process efficiency under
various conditions. This combination of physical mod-
elling and machine learning methods allows for effec-
tive processing of complex, non-linear relationships in
magnetic separation data, significantly enhancing the
capabilities of the initial physical model.

2. Adaptability to different conditions. In the study,
data from the Valyavkinske deposit (Bogdanov, 1984)

was used as an example for initial modelling. The
deposit was chosen due to its typical characteristics,
which well represent the general conditions of iron ore
deposits in Ukraine. However, the developed approach
aims to create a general model of the enrichment sys-
tem that can be adapted to various mining and process-
ing plants. The hybrid method provides the necessary
flexibility for such adaptation, allowing the model to be
tailored to the specific conditions of other deposits and
mining and processing plants (MPP). A key aspect of this
adaptability is the ability to replace the technological
parameter data of MPPs and deposits. This allows for
the modelling results to be aligned with the conditions
of different MPPs. For example, by changing parameters
such as ore characteristics, equipment configuration, or
operating modes, the model can be adapted to the spe-
cifics of a particular plant. Such flexibility is especial-
ly useful when optimising processes at new deposits
or modernising existing MPPs. The hybrid method, by
combining physical modelling with machine learning
techniques, allows for rapid retraining of the model
on new data while maintaining a fundamental under-
standing of the physical enrichment processes.

3. Working with limited data. In conditions of lim-
ited access to real production data, the hybrid meth-
od allows for the effective use of artificially generated
data while preserving the physical validity of the model
through the use of USIM PAC. The effectiveness of this
approach is supported by general principles of using
simulators in modelling enrichment processes, as de-
tailed in the work of A. Karpatne et al. (2017), where
the authors emphasise the importance of integrating
physical models and machine learning methods to en-
hance prediction accuracy in complex systems. Howev-
er, further validation on real production data remains
an important step for fully confirming the accuracy and
reliability of the developed model.

4. Preparation for the development of a control sys-
tem model. Based on a limited initial dataset obtained
from the operation of USIM PAC, an expanded dataset
is created. This expanded dataset is characterised by a
significantly larger volume while preserving key rela-
tionships between fields that correspond to the math-
ematical dependencies of the USIM PAC simulation
system. Such an approach potentially allows for the
generation of a more diverse data sample, which can
serve as a foundation for the further development of a
predictive automated control system for the non-linear
iron ore enrichment system. However, to confirm the ef-
fectiveness of this approach, thorough validation of the
expanded dataset is necessary. As noted by T. Hastie et
al.(2009) in their foundational work on statistical learn-
ing, it is important to conduct comprehensive statistical
analysis to verify the preservation of key relationships
and to perform testing on real data where possible. This
ensures the reliability and practical applicability of the
developed model.

Journal of Kryvyi Rih National University, Vol. 22, No. 2, 2024




Volovetskyi

5. Potential for further development. The hybrid
method leaves room for the integration of additional
modelling methods in the future, which may be benefi-
cial for further research and improvement of the system.

Characteristics and structure of the enrichment sys-
tem model. The enrichment system model is based on
geological and mineralogical data from the Valyavkin-
ske deposit of iron quartzites (Bogdanov, 1984; Ku-
pin, 2008).This data includes ore characteristics such as
iron content, mineral composition, textural-structural
features, and physical properties, which are crucial for
designing the enrichment process. Although the data is
derived directly from the deposit, it has been adapted
for modelling the first stage of magnetic enrichment,
typical of most Ukrainian MPPs (Sokur et al., 2022). This
allows for the creation of a model that reflects the typ-
ical conditions for enriching iron quartzites in Ukraine.
The overall structure of the studied part of the iron ore
enrichment system is presented in Figure 1.
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Hydrocyclone Density Meter

I —

Water

|Magnetic separatorl— Management | —
* System
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Figure 1. Technological scheme of iron ore enrichment
with control of the solid density in the hydrocyclone
Source: developed by the author based on typical technological

process schemes presented in M. Sokur et al. (2022)

The key input parameters of the model include
the percentage of solids entering the hydrocyclone

(25-35%), the flow rate of additional water (180-
393 m3/h), and the iron content in the incoming ore
(36-38%). The output parameters encompass the iron
content in the concentrate (52.5-55.5%) and tails (12.6-
12.7%), as well as the mass flow rate of the concentrate
(55-60 t/h) and tails (40-45 t/h). The selected charac-
teristics of the deposit include an average rock density
of 3.2-3.4 t/m?,the grain size of magnetite inclusions of
0.074-0.044 mm, and the ratio of magnetic to non-mag-
netic minerals of 45-55.

The technological process, illustrated in Figure 1,
consists of the following operations: the feed ore is
supplied by a feeder to a ball mill for fine grinding. The
resulting ore pulp is directed to the hydrocyclone for
hydraulic classification by size. The overflow from the
hydrocyclone is sent to a magnetic separator, where
the material is separated based on magnetic properties
into a magnetic product (concentrate) and a non-mag-
netic fraction (tails). The sands from the hydrocyclone
are returned for regrinding in the ball mill, forming a
closed grinding circuit. Control is achieved by adjust-
ing the percentage of solids entering the hydrocyclone
within the range of 25-35%, which affects the flow rate
of additional water and ensures the quality of the con-
centrate (specifically, the iron content) in accordance
with the target indicators established in the technolog-
ical maps of the MPPs. This model provides a founda-
tion for the development of automated control systems
tailored to the specifics of Ukrainian iron ore deposits.

The use of the USIM PAC simulator. The technological
process simulator USIM PAC from CASPEO was chosen
to create the initial model of the iron ore beneficia-
tion system. USIM PAC stands out among alternatives
due to its greater number of equipment prototypes, the
ability to use different models for circuit elements, and
advanced result analysis. Its reliability is confirmed by
widespread application in metallurgy and chemistry
(Brochot et al., 2002). For modelling the iron ore bene-
ficiation process, the internal base Model 140 - “Feed
Liberation” was utilised, which is an integral part of the
commercial USIM PAC simulator (Fig. 2).
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Figure 2. Iron ore enrichment system based on the Model 140 USIM PAC
Source: image of a typical educational Model 140 that is part of the USIM PAC

This model was chosen for its effectiveness in sim-
ulating the early stages of ore processing, making it
particularly valuable for modelling the enrichment of
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iron ores from Ukrainian deposits. Model 140 is based
on the method of R.L. Wiegel (1975) and the libera-
tion model of A.M. Gaudin (1939), which allows for an
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accurate description of the mineral liberation process
during grinding. It operates with key parameters: the
dilution factor with waste rock, the content of the valu-
able mineral, and the effective grain size of the mineral.
An important advantage of Model 140 is that the com-
position by liberation classes does not depend on the
size distribution, making it especially useful at the be-
ginning of the technological scheme. This corresponds
to the actual operating conditions of Ukrainian MPPs.

When applying Model 140 to the Valyavkinske deposit,
specific characteristics of the local ores were taken into
account, particularly the average magnetite inclusions
and the typical mineralogical composition.

Description of model parameters. The modelling of
the iron ore enrichment process was carried out based
on data obtained using USIM PAC. Key model parame-
ters, including input and output variables, their ranges,
and units of measurement, are presented in Table 1.

Table 1. Key parameters of the iron ore enrichment process model

Parameter Description

Range of values Units of measurement

Input parameters

solid_feed_percent Percentage of solids at the hydrocyclone inlet 25-35 %
water_add_mass_flow* Additional water flow rate 180-393 m3/h

feed_fe_percent Iron (Fe) content in the feed ore 36-38 %

Output parameters

concentrate_fe_percent Iron (Fe) content in the concentrate 52.5-55.5 %

tailings_fe_percent Iron (Fe) content in the tailings 12.6-12.7 %

concentrate_mass_flow Mass flow rate of the concentrate 55-60 t/h

tailings_mass_flow Mass flow rate of the tailings 40-45 t/h

Notes: * - in fact, at this stage, the flow rate of additional water, despite being an input parameter, should be calculated
Source: developed by the author based on the data from O. Bogdanov (1984)

Modelling the distribution of iron content in incoming
ore. The initial assumption for modelling the distribu-
tion of iron content in incoming ore was based on a
normal distribution. This assumption is supported by
the research of J.C. Davis (2002), who demonstrated
that the natural variability of geological processes and
the effects of ore mixing during extraction and trans-
portation contribute to the formation of a normal dis-
tribution of valuable component content. This approach
is also reinforced by the central limit theorem, which is
relevant for many geostatistical processes. Thus, adopt-
ing this assumption is justified and beneficial for mod-
elling iron ore enrichment processes.

To improve the fit of the data to a normal distri-
bution, various transformation methods were explored.
Among them, mathematical transformations (power,
logarithmic,exponential) were applied, as well as statis-
tical transformations such as the Box-Cox method (Box
& Cox, 1964) and Yeo-Johnson method (Yeo & John-
son, 2000). Additionally, data processing methods were
utilised, including outlier removal and the calculation
of moving averages, as well as more complex approach-
es such as kernel density estimation (Silverman, 1986),
principal component analysis (PCA), and rank normali-
sation. The chosen transformation method was applied
to create a dataset with iron content distribution that
closely aligns with a normal distribution. This provided
the necessary foundation for further modelling of iron
ore enrichment processes.

Generation of solid percentage values at the hydro-
cyclone inlet. The solid percentage at the hydrocyclone
inlet (solid_feed_percent) is a key control parameter

in the developed model. A comprehensive methodo-
logical approach was employed for its analysis and
generation. Initially, a statistical investigation of the
distribution of solid_feed_percent values in the prima-
ry dataset was conducted. The Kolmogorov-Smirnov
tests (Massey, 1951) and Shapiro-Wilk tests (Shapiro
& Wilk, 1965) were used to verify the normality of the
distribution. The coefficient of variation, skewness, and
kurtosis were also calculated to characterise the shape
of the distribution, using methods described by T. Hast-
ie et al. (2009).

To fill in missing data, two methods were devel-
oped and compared: kernel density estimation (KDE)
and random filling within quantile constraints (RFQL).
The KDE method, described by B.W. Silverman (1986),
uses kernel density estimation to model the distribu-
tion of existing data. This method fills in gaps with
random values within defined quantile constraints,
preserving the statistical structure of the data while
filling in the gaps. After generating data using both
methods, a comparative analysis of their statistical
characteristics was conducted. Mean values, data dis-
persion, distribution shape, and the presence of outliers
were assessed using methods described in T. Hastie et
al. (2009). This analysis allowed for the identification
of the most suitable method for filling in missing sol-
id_feed_percent values, ensuring the accuracy and
representativeness of the data for further modelling.
The chosen method was applied to create an extend-
ed dataset that includes both original and generated
solid_feed_percent values. This approach ensures the
preservation of the statistical structure of the original
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data while simultaneously expanding the dataset for
more accurate modelling of the enrichment process.

Determining additional water flow values. In the mod-
el structure, the parameters of solid percentage in the
hydrocyclone (solid_feed_percent) and additional water
flow (water_add_mass_flow) have a close yet nonline-
ar relationship. To determine this relationship and fill
in missing water_add_mass_flow values, the following
methodology was applied. Initially, an analysis of the
primary dataset was conducted to study the nature of
the relationship between solid_feed_percent and wa-
ter_add_mass_flow. It was established that this rela-
tionship is most accurately described by a second-de-
gree polynomial dependence. A subset of records with
incomplete data containing values for both parameters
was extracted from the full dataset. Four methods were
chosen for training and prediction: Gradient Boosting
(Friedman, 2001), Random Forest (Breiman, 2001), Line-
ar Regression (Hastie et al., 2009),and Ridge Regression
(Hoerl & Kennard, 1970). The selected methods provide
a variety of approaches to data modelling, allowing for
the capture of both complex nonlinear and linear de-
pendencies. The models were trained on a sample of
complete records. Quality metrics were calculated for
each model, enabling a comparative analysis of the
methods’ effectiveness. This approach allows for the
identification of the most accurate method for filling in
missing water_add_mass_flow values and ensures data
integrity for further analysis of the enrichment process.

Determining dependant parameters. To determine
the iron content in the concentrate and tails, as well
as the mass flow rates of the concentrate and tails for
incomplete records in the dataset, the following meth-
odology was applied. Initially, models were trained
based on the complete dataset to fill in missing values
in incomplete records. Six machine learning methods
were used for this purpose: eXtreme Gradient Boost-
ing (XGBoost) (Chen & Guestrin, 2016), Support Vector
Machines (SVR) with a Laplace kernel (Cortes & Vap-
nik, 1995), Random Forest (Breiman, 2001), Multilayer
Perceptron (MLP) (Rumelhart et al., 1986), Ridge Re-
gression (RR) (Hoerl & Kennard, 1970), and k-Near-
est Neighbours Regression (kNN) (Altman, 1992). The
choice of these methods is due to their ability to effec-
tively work with multiple input/output (MIMO) models
and address approximation tasks. Subsequently, the pa-
rameters of each model were optimised to enhance its
performance. Based on the optimised parameters, final
models were formed for further use in the enrichment
process. This approach ensures the creation of an ex-
tended dataset with complete data for further analysis
and modelling of the enrichment process.

Results and Discussion

Development of the functional diagram. To better under-
stand the relationships between the model parameters
and their roles in the iron ore beneficiation process, a
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functional diagram has been developed (Fig. 3). This di-
agram is based on the technological scheme of iron ore
beneficiation with solid density control in the hydro-
cyclone (Fig. 1) and the iron ore beneficiation system
based on Model 140 USIM PAC (Fig. 2). It visualises the
main input and output variables, as well as their impact
on various stages of the beneficiation process, integrat-
ing information from the previous diagrams into a more
detailed functional model.

1. concentrate_fe_percent

2. tailings_fe_percent
feed_fe_percent

. 3. concentrate_mass_flow
solid_feed_percent - -

—» Mill| Hydrocyclone

Separator|——»
water_add_mass flow MJ

A

Figure 3. Functional diagram
of the relationships between the parameters
of the iron ore enrichment process model
Source: author’s own development after processing the Model
140 USIM PAC

Thefunctionaldiagram (Fig.3) illustratesthe keyvar-
iables of the model and their interrelationships, which
are crucial for understanding the iron ore beneficiation
process. It demonstrates how the percentage of solids
at the inlet of the hydrocyclone and the flow rate of ad-
ditional water affect its operation,which in turn impacts
the efficiency of magnetic separation.J. Svoboda (2004)
notes that these factors are critical for achieving opti-
mal results in the separation process, as they determine
how effectively the useful components are separated.

The iron content in the incoming ore directly influ-
ences the quality of the obtained concentrate and tails,
which is an important aspect for assessing the economic
efficiency of beneficiation. This functional diagram not
only summarises information from previous figures but
also expands it by showing detailed interrelationships
between parameters and their impact on each stage
of the beneficiation process. As a result, it allows for a
better understanding of how changes in one parameter
can affect other aspects of the process. This knowledge
is critically important for optimising the operation of
the iron ore beneficiation system, as emphasised by
TJ. Napier-Munn et al. (2014). Thus, the functional dia-
gram serves as an important tool for analysing and im-
proving technological processes in the mining industry.

The interrelationship between parameters is key to
understanding the dynamics of the iron ore beneficia-
tion system. The parameter feed_fe_percent reflects the
percentage of iron content in the ore being fed into
the system. When this value is constant, the system re-
mains stable, but output parameters, such as concen-
trate quality and product yield, which constitute the

A
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objective function, do not reach their optimal values. To
optimise the process, it is necessary to adjust the pa-
rameter solid_feed_percent, which represents the per-
centage of solid material in the pulp. This parameter is
regulated through water_add_mass_flow, i.e., the mass
flow rate of water added to the system. Increasing or de-
creasing the water supply alters the pulp density, which
directly affects the efficiency of the beneficiation pro-
cess. Thus, the correct adjustment of solid_feed_percent
allows the system to achieve an optimal state, max-
imising concentrate quality while maintaining a high
product yield. In the modelling process, solid_feed_per-
cent and feed_fe_percent are set within defined con-
straints, while other parameters are calculated based
on the mathematical model of the process.

The choice of these parameters is driven by the
primary objective of the work — generating a dataset
that describes the nonlinear process of iron ore bene-
ficiation for further use in creating a predictive control
system (Hodouin, 2009). The selected set of input, out-
put, and influencing parameters provides an adequate
description of the process to achieve this goal. Deter-
mining the optimal size of the expanded dataset is a
key stage in modelling iron ore beneficiation, ensuring
a balance between data representativeness and com-
putational efficiency. This is critically important for the
accuracy of the model, avoiding overfitting, and effec-
tively utilising resources.

As noted by B.A. Wills & J.A. Finch (2015), opti-
mising the dataset size is an important aspect for
achieving high model accuracy and preventing over-
fitting. This optimisation requires consideration of the

specifics of the iron ore beneficiation process, particu-
larly the nonlinear relationships between parameters
and the variability of process conditions. Methods for
determining the optimal size may include learning
curve analysis, cross-validation, and assessing the sta-
tistical significance of sample size increases, as de-
scribed in the work of G.James et al. (2021). The appli-
cation of these methods allows for the determination
of the optimal dataset size that provides sufficient data
representativeness for accurate modelling of the non-
linear iron ore beneficiation process while maintaining
computational efficiency.

Determining the optimal size is an iterative process
that requires constant balancing between accuracy and
efficiency. Evaluation criteria may include model quality
metrics (e.g., RMSE, R?) and computational costs. A typ-
ical dataset size for modelling beneficiation processes
can range from several thousand to hundreds of thou-
sands of samples, depending on the complexity of the
process and accuracy requirements (Napier-Munn et
al., 2014). It is also important to consider specific chal-
lenges associated with iron ore beneficiation data, such
as the uneven distribution of ore quality classes and
the potential presence of outliers, which may affect the
representativeness of the sample.

Analysis of the results of the initial modelling and
characterisation of the generated dataset. As a result of
the preliminary modelling using the commercial soft-
ware USIM PAC (Brochot et al., 1995), 915 data records
were generated. The analysis of the statistical parame-
ters of the primary dataset demonstrates the following
features (Table 2).

Table 2. Statistical characteristics of the initial dataset

solid_feed_  water_add_ feed_fe_ concentrate_  tailings_fe_  concentrate_ tailings_
percent mass_flow percent fe_percent percent mass_flow mass_flow
Key indicators of central tendency
Mean 29.76 272.82 36.65 54.29 12.65 57.62 42.37
Med 29.53 267.84 36.63 54.31 12.65 57.60 4242
Dispersion indicators
Std dev 2.97 62.26 0.79 0.70 0.03 1.21 1.18
Min 25.01 180.44 35.30 52.67 12.60 54.88 39.87
Max 34.99 393.80 38.02 55.86 12.70 60.18 4497
v 0.1000 0.2282 0.0216 0.0128 0.0020 0.0210 0.0279
Distribution shape indicators
Kurtosis -1.24 -1.13 -1.24 -0.70 -1.18 -0.82 -0.86
Skewness 0.09 0.28 0.06 -0.01 0.05 0.01 -0.02
Normality tests
Shapiro-Wilk 2.21E-17 2.72E-18 6.20E-17 2.12E-06 4.25E-15 3.49E-08 6.04E-09

Notes: the most significant indicators were taken for the fields

Source: author’s own calculations when processing the data

The solid phase content in the hydrocyclone lig-
uid (solid_feed_percent) is characterised by a mean
value of 29.76% and a median of 29.53%, indicating
a typical level of solid phase content and a relatively

16 A

symmetrical distribution of the data. The standard devi-
ation of 2.97 and the coefficient of variation of 0.1000
indicate moderate variability of the parameter. The
range of values from 25.01 to 34.99% demonstrates
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significant amplitude of fluctuations. The skewness co-
efficient of 0.09 indicates slight right-side skewness,
while the kurtosis coefficient of -1.24 suggests a flatter
distribution compared to normal. These characteristics
indicate a stable, yet not static, process of solid phase
feeding, with certain distribution peculiarities that
should be considered in further analysis and modelling.

The water flow rate (water_add_mass_flow) has a
mean value of 272.82 and a median of 267.84, indicat-
ing slight right-side skewness of the distribution. The
high standard deviation of 62.26 and the coefficient
of variation of 0.2282 indicate significant variability of
this parameter. The wide range from 180.44 to 393.80
demonstrates substantial fluctuations in water flow,
which may be related to different operating modes of
the hydrocyclone or changes in the input raw material.

Iron content indicators (feed_fe_percent, concen-
trate_fe_percent, tailings_fe_percent) demonstrate high
stability. Low coefficients of variation (0.0216, 0.0128,
0.0020 respectively) and narrow ranges of values indi-
cate the stability of the enrichment process and the ef-
fectiveness of separating iron-containing components.
The closeness of the mean values and medians for these
indicators suggests the symmetry of their distributions,
which is a sign of a stable technological process.

The mass flows of concentrate and tailings (con-
centrate_mass_flow, tailings_mass_flow) are character-
ised by low coefficients of variation (0.0210 and 0.0279
respectively), indicating the stability of the separation
process. The proximity of the mean values and medi-
ans, as well as relatively narrow ranges of values, con-
firm the stability of mass flows, which is an important

indicator of the hydrocyclone’s operational efficiency.
The analysis of the distribution shape shows that all
variables have negative kurtosis coefficients (ranging
from -0.70 to -1.24), indicating a platykurtic distribu-
tion. This means that the distributions have a flatter
shape compared to a normal distribution, which may
indicate greater uniformity of values in the central part
of the distribution. The skewness coefficients are close
to zero (ranging from -0.02 to 0.28), indicating relative-
ly symmetrical distributions for all parameters.

The results of the Shapiro-Wilk normality tests
(Shapiro & Wilk, 1965) show very low P-values for all
variables. This indicates a statistically significant devi-
ation from normal distribution for all studied parame-
ters. Such results may be a consequence of the specifics
of the technological process or the presence of certain
constraints or controls over the parameters.

Overall, the analysis of statistical characteristics
demonstrates a stable distribution of most studied
indicators with moderate variability. Such results cor-
respond to typical observations for technological pro-
cesses, as noted by D.C. Montgomery (2021) in his work
on statistical methods analysis in industry. Deviations
from normal distribution and platykurticity are im-
portant features that need to be considered in further
analysis and modelling of the data. These characteris-
tics may influence the choice of statistical analysis and
modelling methods, as well as the interpretation of the
results of iron ore enrichment process studies. A visual
analysis of the statistical parameters of the primary da-
taset, presented through histograms and distribution
density curves, is shown in Figure 4.

ater_add_mass_flow

|
Density

feed fe percent d concentrate_fe_percent

tail h;wgsje’pe:zc:nt - e
e f

concentrate_mass_flow

tailings_mass_flow

9

Figure 4. Histograms and density distribution curves of the main parameters of the primary dataset
Notes: a - solid phase content in the hydrocyclone liquid; b — water flow rate; ¢ - iron content in the feed ore; d - iron content
in the concentrate; e - iron content in the tailings; f — mass flow rate of the concentrate; g - mass flow rate of the tailings Bar
chart - histogram, line graph - density curve of the corresponding parameter
Source: author’s own development based on conducted calculations

Modelling the distribution of iron content in the in-
coming ore. In the process of modelling the distribution
of iron content in the incoming ore, an initial assump-
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tion was made regarding the normal distribution of the
data. This assumption was based on theoretical consid-
erations and widely accepted practises in the field of
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ore enrichment. However, as previously demonstrated
(Table 2; Fig. 4), the analysis of the primary model data
revealed significant deviations from the expected nor-
mal distribution.The primary cause of this deviation was
identified as the manual entry of data for the relevant
variable, which led to an uneven distribution. Conse-
quently, the task arose to adjust the distribution of this
field to normal, which is critically important for the ac-
curacy of further modelling of the enrichment process.

To address this issue, a number of distribution
correction methods were proposed and analysed.
Among them were: logarithmic transformation, ex-
ponential transformation, the Box-Cox method (Box
& Cox, 1964), the moving average (MA) method, Ker-
nel Density Estimation (Rosenblatt, 1956), and Prin-
cipal Component Analysis (PCA) (Pearson, 1901). The
results of applying these methods are presented in
Figure 5.
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Figure 5. Results of transformation using different methods
Notes: a - Log; b - Exp; ¢ - Box-Cox; d - MA; e - KDE; f - PCA. Distribution of diagrams in the group from left to right, top to
bottom: 1. Histograms of the original (orange) and modified (blue) distributions; 2. Q-Q plot after modification; 3. Density curves

of the original (orange) and modified (blue) distributions

Source: author’s own development based on conducted calculations

Based on a comparative analysis of quality met-
rics (Table 3), the moving average method with au-
tomatic parameter optimisation was selected. This
method provided the best balance between achiev-
ing normality of the distribution and preserving key
characteristics of the original data. Specifically, the MA

method showed optimal results across four of the five
key criteria: multiplier, skewness, kurtosis, and preser-
vation of the original data. Although the method did
not achieve optimal results for P-value, automatic op-
timisation helped minimise undesirable effects of the
transformation.

Table 3. Comparison of data transformation methods

Method Multiplier P-value Skewness Kurtosis Original data percentage
Optimal <10 0.05 0.5 0.5 210%

Log 3 0.0950 0.0309 0.1721 25.03%

Exp 1 0.2364 -0.0065 0.2006 50%
Box-Cox 8 0.8050 -0.0009 -0.1157 11.11%

MA 2 0.1725 0.0265 0.1731 33.38%

Notes: the first line is the optimal indicators that needed to be achieved during the automatic search for parameters

Source: author’s own calculations when processing the data
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The application of the chosen method allowed for
the creation of a new dataset, which includes 730 com-
plete and 2,026 partially filled records, demonstrating
an approximate Gaussian distribution of iron content
(the filled data column feed_fe percent with 2,756
values). This created a reliable foundation for further
analysis and modelling of the enrichment process. It
is important to note that correcting the distribution of
iron content in the incoming ore is critical for the accu-
racy of the entire enrichment model. This enables more
accurate forecasting of process outcomes and optimi-
sation of control parameters, ultimately enhancing the
efficiency of the entire iron ore enrichment process.

Generation of solid feed percentage values at the hy-
drocyclone inlet. The solid feed percentage at the hy-
drocyclone inlet (solid_feed_percent) is a key control
parameter in automated iron ore beneficiation sys-
tems. B.A. Wills & J.A. Finch (2015) emphasise that this

parameter significantly affects the efficiency of the ben-
eficiation process and the optimisation of target indica-
tors, such as concentrate quality and product yield. A
statistical analysis of the primary dataset revealed that
the distribution of solid_feed_percent has a flat struc-
ture. This feature creates favourable conditions for ex-
ploring various operating modes of the system (Fig. 4).
Two methods were employed to fill in the missing data:
Kernel Density Estimation (KDE) (Rosenblatt, 1956) and
Random Filling with Quantile Limits (RFQL) (Hastie et
al., 2009). The results of the transformation of the sol-
id_feed_percent distribution using these methods are
presented in Figure 6, which visually demonstrates the
differences between the KDE and RFQL methods: the
KDE method provides a smoother distribution, while
RFQL better preserves the structure of the original data.
This visual comparison is complemented by a detailed
analysis of statistical indicators presented in Table 4.
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Figure 6. Transformation of the solid_feed_percent distribution due to gap filling
Notes: a — use of the KDE method; b - use of the RFQL method. Distribution of diagrams in the group from left to right, top
to bottom: 1. Histograms of the original (red) and modified (orange) distributions; 2. Density curves of the original (blue) and
modified (red) distributions; 3. Box plot of the value distribution; 4. QQ plot of the residuals
Source: author’s own development based on conducted calculations

Table 4. Comparison of statistical indicators of missing data imputation methods

Metric RFQL KDE Difference
Mean 29.8897 29.8905 0.0008
Std dev 2.8954 3.0256 0.1303
Med (50%) 29.8870 29.8740 -0.0130
25" percentile 27.3300 27.2000 -0.1300
75™ percentile 32.3650 32.5003 0.1352
Skewness 0.0329 0.0472 0.0143
Kurtosis -1.1982 -1.2442 -0.0460

Source: author’s own calculations in data processing
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The data analysis in Table 4 shows that both meth-
ods demonstrate similar results regarding means, dis-
persion, and skewness. However, the RFQL method
proved to be more stable, with a lower tendency to
create outliers. While KDE offers a broader coverage
of possible values, RFOL better maintains the realis-
tic characteristics of the process, which is critical for
the accuracy of the model, as discussed in the work of
T. Hastie et al. (2009). The choice of the RFQL method
for further work is justified by its ability to preserve the
statistical structure of the original data, which is par-
ticularly important for modelling complex technolog-
ical processes. This method allows for the generation
of data that not only fills in gaps but also retains the
characteristics of the actual beneficiation process, as
noted by A. Gelman & J. Hill (2006). It is important to
note that changes in the solid percentage significantly
impact the efficiency of the beneficiation process, and
optimal control of this parameter can lead to improved
concentrate quality and reduced losses of valuable
components in the tails.

Determining the values of additional water con-
sumption. The parameters of solid feed percentage
(solid_feed_percent) and additional water flow rate
(water_add_mass_flow) were found to be non-linearly
interrelated. Solid_feed_percent serves as an indicator
of the system’s control mode, while water_add_mass_
flow regulates this mode (Wills & Finch, 2015).An anal-
ysis of the initial dataset confirmed the non-linearity of
the relationship between solid_feed_percent and wa-
ter_add_mass_flow, which is most accurately described
by a second-degree polynomial dependence. From 730
complete records containing values for both parame-
ters,a model was developed to predict water consump-
tion for 2,026 records lacking this value. Four machine
learning methods were applied for modelling: Gradi-
ent Boosting (Friedman, 2001), Random Forest (Bre-
iman, 2001), Linear Regression, and Ridge Regression
(Hastie et al., 2009), providing a variety of approaches
to data modelling. The effectiveness of each method
was evaluated using key metrics (Table 5) and visual-
ised in Figure 7.

Table 5. Comparison of the effectiveness of machine learning methods for modelling

Method MSE MAE R?
Gradient Boosting 0.9691 0.7396 0.9997
Random Forest 0.7237 0.6129 0.9998
Linear Regression 1.6805 1.0276 0.9996
Ridge 4.1035 1.5272 0.9989

Source: author’s own calculations in data processing

The analysis of results showed that the Random
Forest method demonstrated the best performance
with the lowest MSE and MAE values, as well as the
highest R (James et al.,2021). This indicates its high ac-
curacy and ability to effectively model complex non-lin-
ear dependencies between the parameters of the en-
richment process. The obtained results have significant
practical implications for optimising the enrichment
process. They allow for more accurate forecasting and
control of the solid percentage at the inlet of the hy-
drocyclone, which is crucial for enhancing the efficien-
cy of the entire iron ore enrichment process. B.A. Wills
& J.A.Finch (2015) emphasise in their work that precise
control of this parameter can significantly impact the
quality of the final product and reduce processing costs.

Definition of dependant parameters. To search for
missing values in the fields of iron content in the con-
centrate, iron content in the tails, mass flow rate of the
concentrate,and mass flow rate of the tails,an approach
is employed that utilises a complete dataset to train
machine learning algorithms that fill in the missing

values. This enhances the integrity of the extended da-
taset, which is critically important for further analysis
and modelling of enrichment processes. Six machine
learning methods were selected for this purpose: eX-
treme Gradient Boosting (Chen & Guestrin, 2016), Sup-
port Vector Machines with Laplace kernel (Cortes & Va-
pnik, 1995), Random Forest (Breiman, 2001), Multilayer
Perceptron (Goodfellow et al., 2016), Ridge Regression
(Hoerl & Kennard, 1970), and k-Nearest Neighbours
Regression (Altman, 1992). These methods are distin-
guished by their ability to effectively solve approxima-
tion tasks using MIMO models. Each of these methods
was optimised to ensure maximum efficiency, allow-
ing for the creation of models for accurate modelling
of technological enrichment processes. The analysis
results presented in Table 6 show that the Multilayer
Perceptron demonstrates the best performance. This
model has the lowest error values and the highest coef-
ficient of determination R?, indicating its high accuracy
and effectiveness in generalising data, as detailed by I.
Goodfellow et al. (2016) in their work on deep learning.
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Table 6. Comparison of metrics for mathematical learning systems

Method MSE RMSE MAE R?
XGB 0.0021 0.0460 0.0288 0.9977
SVR 0.0015 0.0383 0.0188 0.9989

RF 0.0032 0.0564 0.0336 0.9973
MLP 0.0013 0.0361 0.0208 0.9990
RR 0.0016 0.0396 0.0247 0.9986
kNN 0.0030 0.0540 0.0329 0.9972

Source: author’s own development based on the calculations performed
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Source: author’s own development based on the calculations performed

Additionally, the SVR method with Laplace kernel
also showed competitive results. With a high R? value
and low error values, SVR is a reliable alternative for
modelling, especially when neural networks are over-
ly complex or resource-intensive. This method offers
a balanced solution between model complexity and
accuracy, making it very useful for real production
conditions. Figure 8 illustrates the residuals when
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using machine learning methods. MLP demonstrates
the most consistent results without significant devia-
tions, while SVR also proved to be stable, confirming
its reliability. MLP is the optimal choice for high-pre-
cision solutions to complex enrichment technological
tasks, while SVR with Laplace kernel can be a practical
option for situations where a combination of efficien-
cy and simplicity is required.
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Figure 8. Visualisation of residuals when using different learning methods

Notes: a - XGBoost; b - Support Vector Regression; c - Random Forest; d - Perceptron Neural Network; e - Ridge Regression; f -
k-Nearest Neighbors Regression. Fields in the group from left to right, top to bottom: concentrate_fe_percent, tailing_fe_percent,
concentrate_mass_flow, tailing_mass_flow
Source: author’s own development based on the calculations performed

Analysis of extended data. As a result of working
with the data, an extended dataset was obtained with
several modified distributions. The total number of re-
cords in the new dataset amounted to 2,756 records,
which was determined by the initial requirements for

automatic parameter selection when working with the
feed_fe_percent field. Further expansion of the data
array can be conducted through an iterative cycle ac-
cording to the developed methodology. The statistical
indicators of the new dataset are presented in Table 7.
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Table 7. Statistical characteristics of the resulting dataset

solid_feed_  water_add_ feed_fe_ concentrate_  tailings_fe_  concentrate_ tailings_
percent mass_flow percent fe_percent percent mass_flow mass_flow
Key indicators of central tendency
Mean 29.86 270.02 36.65 54.28 12.65 57.65 42.34
Med 29.82 261.65 36.66 54.28 12.65 57.7 42.32
Dispersion indicators
Std dev 2.86 59.66 0.54 0.55 0.02 0.91 0.87
Min 25.01 180.58 35.3 52.66 12.6 54.88 39.98
Max 34.96 393.8 38.02 55.86 12.7 60.09 44.96
cv 0.0956 0.221 0.0148 0.0101 0.0014 0.0157 0.0206
Distribution shape indicators
Kurtosis -1.18 -1.03 0.01 -0.27 -0.04 -0.16 -0.1
Skewness 0.04 0.35 0.04 0.05 0.06 -0.14 0.11
Normality tests
Shapiro-Wilk 7.51E-28 1.82E-30 5.55E-10 7.06E-03 4.82E-07 1.64E-04 1.06E-03

Source: author’s own development based on the calculations performed

The main indicators of central tendency, such as
the mean and median, remained virtually unchanged
for most indicators, indicating the preservation of the
overall data structure. However, slight changes were
observed in the indicators of water_add_mass_flow and
concentrate_mass_flow, which may be related to the
modification of the distribution of these fields. The anal-
ysis of dispersion indicators revealed that the standard
deviation decreased for most indicators, indicating a re-
duction in data spread. The coefficients of variation also
decreased, suggesting an increase in data homogeneity.

The study of distribution shape indicators demon-
strated that the coefficients of excess and skewness un-
derwent slight changes, indicating the preservation of
the overall shape of the distribution. However, for some
indicators, such as feed_fe_percent, concentrate_fe_per-
cent, and tailings_fe_percent, a decrease in excess was

observed, which may indicate a convergence towards a
normal distribution. The results of normality tests, par-
ticularly the Shapiro-Wilk test, indicate that the distri-
bution of most indicators remains non-normal. However,
for some indicators (concentrate_fe_percent, tailings_
fe_percent), a slight approach to normality is observed.
In general, it can be concluded that the modifica-
tion of the distribution of certain fields led to minor
changes in the statistical characteristics of the dataset.
The main indicators of central tendency remained vir-
tually unchanged, while the dispersion and shape indi-
cators experienced slight improvements. This suggests
that the overall data structure has been preserved, but
their homogeneity and approach to normal distribution
have somewhat increased. The visual distribution of the
resulting dataset, presented through histograms and
density distribution curves, is shown in Figure 9.
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Figure 9. Histograms and density curves of the data distribution of the main parameters of the primary dataset
Notes: a - solid phase content in the hydrocyclone liquid; b — water flow rate; ¢ - iron content in the feed ore; d - iron content
in the concentrate; e - iron content in the tailings; f - mass flow rate of the concentrate; g - mass flow rate of the tailings. Bar
chart - histogram, line graph - density curve of the corresponding parameter
Source: author’s own development based on the calculations performed
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As a result of the conducted analysis, an extended
dataset was formed while preserving the overall struc-
ture of the original data. The modification of the dis-
tributions of certain parameters led to minor changes
in the indicators of central tendency and an improve-
ment in the homogeneity of the data. The presented
statistical characteristics and visualisations confirm
the increased proximity of the distributions to normal-
ity. The developed methodology for creating extended
datasets for modelling magnetic separation of iron ore
demonstrates significant potential for enhancing en-
richment processes in the mining industry. The hybrid
method used in the study has the potential to integrate
aspects such as modularity, which, as defined by S. Sha-
lev-Shwartz & S. Ben-David (2014), allows for the up-
dating of components without the need to rebuild the
system, ensuring adaptation to new requirements.

The use of the USIM PAC simulator for generating
the primary dataset aligns with the approach described
in the work of TJ. Napier-Munn et al. (2014), who em-
phasise the importance of applying specialised simula-
tors for modelling enrichment processes. However, un-
like their study, this work identified deviations from the
expected Gaussian distribution, highlighting the neces-
sity of validating theoretical models against real data,
as noted by B.A. Wills & J.A. Finch (2015). The appli-
cation of the moving average method with automatic
parameter optimisation for data distribution correction
is an innovative approach that has not been widely cov-
ered in previous research. This method demonstrated
better results compared to traditional data transfor-
mation methods, such as logarithmic and exponential
transformations, as described in the work of T. Hast-
ie et al. (2009), which discusses various data processing
techniques to improve their quality.

The use of the Random Forest with Quantile Limits
method for filling in data gaps shows similarities to the
approach proposed by L. Breiman (2001), but with addi-
tional constraints to ensure the physical validity of the
data. This enhancement allows for better preservation
of the characteristics of the actual enrichment process,
which is a critical aspect emphasised by A. Gelman &
J.Hill (2006).A comparison of different machine learning
methods for modelling the relationships between pa-
rameters of the enrichment process revealed the supe-
riority of the multilayer perceptron over other methods.
This aligns with the findings of A. Karpatne et al. (2017),
whose authors also noted the effectiveness of neural
networks for modelling complex nonlinear processes
in the mining industry. However, unlike their work, this
study also found high effectiveness in the SVR method
with a Laplace kernel,which may serve as a useful alter-
native in conditions of limited computational resources.

The developed methodology for creating extend-
ed datasets corresponds to the current trends of In-
dustry 4.0, as mentioned in the research by H. Lasi et
al. (2014). 1t provides modularity in the approach,

allowing for the integration of new methods and data
sources (Khaleghi et al., 2013). It is important to note
that this research focuses on the specifics of Ukraini-
an iron ore deposits, particularly the Kryvyi Rih basin,
which distinguishes it from many international studies.
This allows for consideration of local geological con-
ditions and technological features, which are critical
for the practical application of the results. Overall, the
obtained results lay the foundation for further devel-
opment of automated control systems for enrichment
processes, aligning with the research directions out-
lined by P. Kadlec et al. (2009) and I.E. Grossmann &
G. Guillén-Gosalbez (2010), who detail the importance
of automation in managing technological processes
and its impact on production efficiency. In particular, a
promising direction is the integration of the developed
methodology with decision-making systems and ener-
gy consumption optimisation.

Compared to existing studies, the developed meth-
odology offers a comprehensive approach that com-
bines physical modelling, statistical methods, and
machine learning. This allows for overcoming the limi-
tations associated with the lack of real production data
while maintaining the physical validity of the model.
Such an approach opens new opportunities for optimis-
ing iron ore enrichment processes and enhancing pro-
duction efficiency in the context of Ukrainian mining
and enrichment plants.

Conclusions

As a result of the research, a comprehensive method-
ology for creating extended datasets for modelling the
magnetic separation process of iron ore has been de-
veloped, taking into account the specifics of Ukrainian
deposits and the limitations of available information.
Key achievements include: the creation and validation
of an extended dataset based on the technological
simulation USIM PAC; the development of a method for
correcting data distribution with automatic parameter
optimisation; and a comparative analysis of machine
learning methods, where the multilayer perceptron
demonstrated the highest prediction accuracy. The sci-
entific novelty of the research lies in the development
of an innovative methodology that combines techno-
logical simulation, statistical data correction methods,
and modern machine learning algorithms for modelling
the processes of magnetic separation of iron ore. This
approach allows overcoming the limitations associated
with the lack of real production data while maintaining
the physical validity of the models.

The work provides opportunities to enhance pro-
duction efficiency and product quality at Ukrainian
mining and beneficiation plants. The developed meth-
odology creates conditions for more precise tuning of
technological processes, which is particularly impor-
tant in the early stages of design and in conditions
of limited access to technological data. Furthermore,
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this methodology represents a significant step to-
wards improving the efficiency and competitiveness of
Ukrainian MPPs. This innovative approach opens new
possibilities for optimising production and enhancing
product quality in the field of iron ore beneficiation,
contributing to the overall progress of the industry and
strengthening Ukraine’s position in the global iron ore
raw materials market.

Nevertheless,an important direction for further re-
search is the integration of the developed models into
comprehensive automated control systems for techno-
logical processes, which will promote an increase in
the level of automation and optimisation of manage-
ment in enterprises. The application of deep learning

while the development of adaptive control algorithms
and optimisation of energy consumption will contrib-
ute to cost reduction and enhanced environmental
safety in production.
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KomMnAeKCHa MeTOAOAOrifi CTBOPEHHA PO3LUMPEHUX AaTaCeTiB
AASl MOAGAIOBAHHA NpoLecy MarHiTHOI cenapauii 3aAi3HOI pyAu

OnekcaHAp BonoBeubKUH

AcnipaHt

KpuBOpi3bKni HaLiOHaNbHUI yHiBEpCUTET
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AHoTauif. [locnigkeHHs MpOMOHYE iHHOBAUIMHMIA Nigxis 0O CTBOPEHHS! PO3LWMPEHUX HABOPIB AaHWX ANs
MOJENOBAHHA MArHiTHOI cenapawii 3ani3HOi pyau, WO € BaXAUBMM AN4 NiABULLEHHS ePeKTUBHOCTI Ta aBTOMaTU3auii
npoueciB 36arayeHHs B ripHM4oa00yBHIM NPOMUCIOBOCTI. MeTa LOCNioKEHHS nongrana B po3pobui metomonorii
CTBOPEHHSN PO3LWMPEHNX HAOOPIB AaHWX AN MOAENOBAHHS MarHiTHOI cenmapauii 3ani3Hoi pyau, ska BpaxoBYeE
cneumdiky yKpaiHCbKMX POAOBULL TA LO3BOJISIE FTEHEPYBATH Pernpe3eHTaTUBHI faHi B yMOBaX 0OMEXeHOCTi peanibHuX
BMPOOHWUYMX [AAHMX LUASXOM iHTerpauii @i3M4yHOro MoAentoBaHHA 3 METOAAaMM MALIMHHONO HaBYaHHA. MeTtoam
[OCNIAKEHHS: MOAENOBAHHSA 3 BUKOPUCTAHHSIM MaTeMaTUUYHOIO HaBYaHHS, CUMYAALLIS HA OCHOBI di3MYHMX NPOLLECiB,
CTaTUCTUYHUI aHanis. Y pocnifxeHHi po3rnsHyTo BUKOpUCTaHHa cumynsatopa USIM PAC ons MopentoBaHHs cuctemMu
30arayeHHs 3ani3HOI pyaM Ta aganTaLilo 4aHUX AN MAarHiTHOrO 36aravyeHHs, Wo 3ab6e3neyvye TOUHICTb MOLENHOBAHHS
TEXHOJOMYHMX NpoLEeCiB 36arayeHHs. 3aCTOCYyBaHHAM CUMYNATOPY OTPUMAHO Habip AaHMX Qi3MYHOIO MOAENOBAHHS
YacTMHKM npouecy 36arayeHHs Ha OCHOBI JaHux BansBkiHcbkoro poposuuwa. [1poaHanizoBaHO nepBUHHE
MOJeNtoBaHHS Habopy faHMX, BKIOYAOUM CTAaTUCTUYHI XapaKTepUCTUKK, POPMY PO3NOAiINY Ta TECTU HA HOPMAJbHICTb
LN BUSIBNIEHHS MONiB, WO noTpebytoTb kopekwii. Ha oCHOBI pe3ynbTaTiB aHanisy BU3HAYEHO KOHKPETHI BUMOTM A0
po3noginy AaHUX y HOBOMY JaTaceTi, aKuii Mae ByTn chopMOBaHMIA 419 NOAANBLLIOINO BUKOPUCTaHHS. BignosigHo
[0 UMX BUMOT peani3oBaHO AeKifibka MaTeMaTUYHWX MOAenen, Lo BiATBOPIOKTb 33a4aHi KpuTepii Ta napameTpu.
[1n9 KOXHOro nons AaHux peTefbHO MifibpaHo HarKpally MoAenb Ta BUKOHAHO KOpeKLito aataceTy 3a ii gaHuMmu,
Wwo6 MakcMManbHO HAbAM3UTK po3nofin Ao 6axaHoro. s oTpMMaHMX CKOPUIOBAHUX AAHMX MpoBeaeHa BcebiyHa
BaNifaLia pe3ynbTaTiB 3 aKLUEHTOM Ha 36epexeHHi (i3MYHOi AOCTOBIPHOCTI AaHUX Ta iX BigMOBiIAHOCTI peasbHUM
npouecaM 36arayeHHs. [poBefeHo AeTanbHUI aHaNi3 BIAKOPUTOBAHUX AaHUX, d TAKOXK CTATUCTUYHI XapakTepUCTUKM
pe3ynbTyo4oro fataceTy, B pe3y/bTaTi Yoro niaTBepaKeHa ePeKTUBHICTb po3po6ieHOi KOMMIEKCHOI MeTofoMorii
MOJEeN0BaHHS Ta aganTaLii LaHWX 419 MArHiTHOro 36arayeHHs 3anisHoi pyau. MeTofonoria Mae NpakTUYHY LiHHICTb
3aBASKM IHHOBALiMHOMY MiAxo4y A0 CTBOPEHHS PO3LIMPEHUX HAaboPiB AaHUX AN MOAENIOBAHHS MarHiTHOI cenapauii
3ani3HOI pyaum, Wo niasuLLye eeKTUBHICTb | aBTOMATM3aLito NpoLeciB 36arayeHHs, BpaxoByoum cneundiky poaoBuLy,
Ta reHepyrUn penpe3eHTaTUBHI faHi B YMOBAX 0OMEXEHOCTi peaibHUX AaHMX

KalouoBi caoBa: HeniHiliHe MoaentoBaHHs 36arayeHHs; KepyBaHHS Cenapali€to; MalMHHE HAaBYaHHS B 36arayeHHi;
aBTOMaTM3auis 36aravyyBanbHMX MPOLECIB; CUMYNSALLIS TEXHOMOMYHMX NapaMeTpiB
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