
Assessing Energy-related Markets through Multifractal Detrended 
Cross-correlation Analysis 

Andrii Bielinskyi1 a, Vladimir Soloviev1 b, Serhiy Semerikov1 c, Victoria Solovieva2 d,  
Andriy Matviychuk3 e and Arnold Kiv4 f 

1Kryvyi Rih State Pedagogical University, 54, Gagarin av., Kryvyi Rih, Ukraine 
2State University of Economics and Technology, 16, Medychna str., Kryvyi Rih, Ukraine 

3Kyiv National Economic University named after Vadym Hetman, 54/1, Peremogy pr., Kyiv, Ukraine 
4Ben-Gurion University of the Negev, 653, P.O.B., Beer-Sheva, Israel 

Keywords: Crude Oil, Natural Gas, Sustainable Development, Multifractality, Multifractal Detrended Cross-Correlation 
Analysis, Cross-Correlations. 

Abstract: Regulatory actions aimed the sustainable development force ordinary traders, policymakers, institutional 
investors to develop new types of risk management strategies, seek better decision-making processes that 
would allow them more effectively reallocate funds when trading and investing in energy markets such as oil 
and gas. Due to their supply and demand, they are presented to non-equilibrium, chaotic, long-range 
dependent, etc. Oil and gas play an important role not only in the financial markets, but they are important in 
many goods and services, and their extensive usage leads to environmental damage. Thus, the dynamics of 
the corresponding energy-related indices is a useful indicator of the current environmental development, and 
their modeling is of paramount importance. We have addressed one of the methods of multifractal analysis 
which is known as Detrended Cross-Correlation Analysis (DCCA) and its multifractal extension (MF-DCCA) 
to get reliable and efficient indicators of critical events in the oil and gas markets. For example, we have taken 
daily data of Henry Hub natural gas spot prices (US$/MMBTU), WTI spot prices (US$/BBL), and Europe 
Brent spot prices (US$/BBL) from 7 February 1997 to 14 December 2021. Regarding their (multifractal) 
cross-correlations, we get such indicators as the DCCA coefficient 𝜌 , the cross-correlation Hurst 
exponent, the maximal, minimal, and mean singularity strength, the width of multifractality, and its 
asymmetry with the usage of sliding window approach. Our empirical results present that all of the presented 
indicators respond characteristically during crashes and can be effectively used for modeling current and 
further perspectives in energy markets and sustainable development indices.  

1 INTRODUCTION 

The largest and most developed countries are aimed 
at sustainable development. Both natural gas and 
crude oil prices demonstrate the general pattern of 
current trends in the world, particularly, in the 
development of our environment.  

There were some discussions about whether 
natural gas and oil prices appear to be price-related. 
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Compared to natural gas, which tends to be regionally 
determined, the crude oil market represents the state 
of the whole world. Therefore, it is discussible which 
indices of the energy-related market to use for 
identification of possible trends in the green 
economy.  

Both supply and demand on the energy market 
form complex, non-stationary, irreversible, non-
equilibrium, and multifractal dynamics in these 
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markets. These characteristics are reflected in fat-tails 
(Mandelbrot, 2021) of the probability distribution of 
these markets and their autocorrelation functions 
(Aloui and Mabrouk, 2010; Herrer et al., 2017). 
Mandelbrot presented “fractals” to deal with such 
irregularities (Mandelbrot, 1967). 

Then, there was proposed and revised Rescaled 
Range Analysis (R/S) by (Hurst, 1951), and it was 
revised by (Lo, 1991) for studying short- and long-
range dependences in a time series. Then, there was 
proposed Detrended Fluctuation Analysis by (Peng et 
al., 1994), and (Kantelhardt et al. 2002) extended it to 
the multifractal version (MF-DFA), which can 
explore efficiency, short- and long-term memory, etc. 
over multiple scales. This approach is one of the most 
reliable in defining multifractal characteristics in non-
stationary time series. Except for previous ones, 
(Podobnik & Stanley, 2008) proposed to study 
power-law cross-correlations between several series. 
That method was called Detrended Cross-
Correlational Analysis (DCCA). Then, (Zebende 
2011) proposed DCCA cross-correlation coefficient 
for detrended covariance fluctuation functions of time 
series.  

Previously, we devoted our papers to stock, 
crypto, and sustainable development indices. We 
studied them using different measures of complexity: 
Information entropy and its modifications, 
Recurrence analysis, graph-based measures, 
irreversibility measures, quantum indicators, and 
particularly, classical MF-DFA method and random 
matrix theory to study cooperative behavior among 
different cryptocurrencies and stock indices 
(Bielinskyi et al., 2021b; Bielinskyi et al., 2020; 
Soloviev et al., 2019; Bielinskyi et al., 2021; 
Bielinskyi et al., 2021). In this paper, we would like 
to make an analysis of energy-related markets such as 
WTI and Europe Brent crude oil with Henry Hub 
natural gas spot markets in terms of the (MF-)DCCA 
approach. According to this method, we expect to get 
reliable indicators of crash phenomena in the 
mentioned market. Such indicators of complexity 
would be useful for traders, institutional investors, 
governments, who are looking for better decision-
making processes, more effective risk management 
strategies during trading, and it would be useful for 
those who care about modeling and forecasting the 
sustainable development in the world.  

2 REVISION OF THE PREVIOUS 
STUDIES 

Different studies were devoted to the monitoring and 
forecasting of the crude oil and natural gas prices, 
CO₂ emissions.  

As an example, the study of (Hoayek et al., 2020) 
aimed to measure the power and efficiency of 
information reflected in gas prices using different 
econometric and mathematical models of the 
information, records, and game theories. In their 
paper, they studied the dynamics of Henry Hub and 
National Balancing point gas markets as they are 
considered to be one of the most developed hubs in 
the U.S. and Europe. For both markets, the authors 
chose three indicators: level of competition, price 
stability, and price uncertainty. Regarding 
conditional and Shannon entropy, the authors reduced 
the amount of uncertainty in the given indicators and 
defined how informative and reliable was their 
recommendations from given metrics. Their approach 
emphasized that additional measures need to be 
applied to the European gas market. For the U.S. gas 
market, the situation is stable. As authors point out, 
their study needs additional growth: to include more 
mathematical/statistical analysis, the greater number 
of observations, indicators. Also, they mention that 
problems appear with the probability distribution 
needed for Shannon entropy and its analogs, which 
requires additional work on creating methods for the 
computation of the underlying probability 
distribution of each indicator. The study made by (Joo 
et al., 2020) examined the effect of the 2008 global 
financial crisis on the crude oil market (WTI crude oil 
spot prices) with the usage of Hurst exponent, 
Shannon entropy, and the scaling exponent. They 
investigated how changed efficiency, long-term 
equilibrium, and collective phenomena before and 
after the crash. According to their analysis, there was 
not much difference in volatility of the crude oil 
market before and after the crash. Period before crash 
remained efficient according to Hurst exponent (𝐻 = 0.50 ± 0.01) , displaying a random walk of 
WTI prices. After the crash oil prices remained 
persistent (𝐻 = 0.55 ± 0.01), and then, after 2010, 
prices started to behave anti-persistently (𝐻 =0.45 ± 0.01) . According to Shannon entropy, the 
overall market behavior was closer to long-term 
equilibrium (higher entropy). However, after the 
crash its entropy started to reduce, indicating the 
presence of long-term memory effect, dynamics far 
from equilibrium. Scale-free properties remained 
after that outbreak, which demonstrates the power-
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law exponent. This exponent decreased, implying that 
the probability of observing double returns became 
higher. (Lautie et al., 2019) investigated price 
relationships across WTI crude oil futures using the 
concept of mutual information and information flows. 
Their study presents rolling window dynamics for 
mutual information to investigate how it behaves 
during several structural shocks in this market. 
Mutual information increased noticeably in 2004 but 
dropped sharply in 2012-2014. Thus, different parts 
of the term structure of WTI futures prices became 
less correlated. Also, the researchers applied the 
concept of Transfer entropy to study information 
flows between contracts with different periods. They 
found that short-dated contracts emit more 
information, and, after 2012, flows in forward and 
backward directions were almost the same, but if to 
look at the whole trading period, they are presented to 
be more volatile compared to middle-dated contracts. 
(Hu et al., 2021) said about a common method for 
evaluating energy use in energy resource exploitation 
and method for evaluating it which is called energy 
return on investment. There, they proposed an 
interpretation of this method in terms of entropy. 
They considered an energy resource exploitation 
system to be a kind of dissipative system. Then, they 
derived a relation between energy return on 
investment and entropy change. The authors 
emphasized that future development of energy return 
on investment and its related indicators must be done 
in terms of entropy theory.  

Some of the studies devoted to oil and gas markets 
included methods of fractal and multifractal analysis. 
As an example, (Engelen et al., 2011) studied the spot 
rate dynamics of Very Large Gas Carriers regarding 
MF-DFA and rescaled range analysis. Studying 
logarithmic returns of the daily spot rates, they 
concluded that freight rates exhibited persistent 
behavior. Most of the time time-depended Hurst 
exponent was around 0.7. Comparing multifractal 
characteristics of initial and shuffled data, they found 
long-range correlations to prevail rather that fat tails 
in the probability distribution. The impact of the 
coronavirus pandemic on the multifractality of gold 
and oil prices based on upward and downward trends 
was examined by (Mensi et al., 2020). Such an 
interesting approach was applied as asymmetric 
detrended fluctuation analysis to study 15-min 
interval intraday data. Results presented that as time 
scale increased, asymmetric multifractality also 
increased. According to their conclusions, 
multifractality is especially high for the downtrend of 
Brent oil and upward trend of gold. That 
asymmetrical multifractality was strengthened during 

COVID-19. Interestingly, during the pandemic 
period, both markets became more inefficient (less 
complex). Overall, the asymmetric analysis is also a 
powerful instrument for tracking the investor’s 
sentiments and applying more wise decisions when 
trading at high-frequency time scales. (Garnier & 
Solna, 2019) studied WTI and Brent oil price data for 
the period 1997-2016 with the usage of wavelet-based 
decomposition, Hurst exponent, and volatilities. The 
estimated exponent for Brent is 0.46 and for WTI is 
0.44, which told about their mean-reverting behavior. 
The estimated volatilities were 34% for Brent and 
32% for WTI. Analysis of Hurst exponent and 
volatilities using sliding window procedure presents 
that the nature of both indices is presented to be non-
constant. During crashes volatility is the biggest and 
Hurst exponent increases, indicating that those events 
are presented to be less efficient (more persistent). 
Mass Hub, Mid C, Palo Verde, and PJM West are the 
four major electricity indices of the U.S. that were 
studied in (Ali et al., 2021) using multifractal 
analysis. Researchers found the significant presence 
of multifractality in the electricity market. However, 
their analysis included a sliding window procedure 
that presented varying degrees of multifractality. 
According to their results PJM West had the highest 
degree of multifractality and Mass Hub had the 
lowest i.e., it was presented to be the most efficient, 
while PJM was the least efficient. Moreover, 
according to the generalized Hurst exponent, at 𝑞 =2, all indices appeared to be anti-persistent (mean-
reverting). The rolling window procedure presents 
that even not for the whole time series but its sub-
series, the dynamics still demonstrate mean-reverting 
property.  

Graph theory plays an important role in different 
fields of science. Its instruments are of paramount 
importance when we study collective non-linear 
phenomena among different indices, especially, for 
the energy market. (Fang et al., 2018) applied some 
of the methods for converting time series into a 
complex network and applied some graph-based 
indicators such as average shortest path and density 
with the sliding window procedure. Time series of 
natural gas, coal, and crude oil were chosen. Between 
each pair were calculated the correlation coefficients. 
Also, they defined correlation models based on 
correlation coefficients and a coarse-graining 
procedure. They improved the betweenness centrality 
algorithm to measure the evolution direction of the 
correlation modes in different clusters of energy 
prices. Such correlations between clusters were 
explored for different time lengths of the sliding 
window. For smaller time windows both positive and 
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negative correlations were observed. When the size of 
the window increased, positive correlations also 
became higher. That indicates the interrelationships 
between the closing prices of the three types of energy 
to be higher in the long term. Multilayer networks are 
important for studying complex systems of complex 
systems. One general graph may consist of several 
and more subgraphs. (Xu et al., 2020) introduced a 
multilayer recurrence network for examining energy 
and carbon markets. Also, after they defined the 
information linkage coefficient and time-delayed 
information linkage, they measure interrelationships 
between carbon and energy markets in different 
stages of the EU carbon market. Data for the period 
from 2011 to 2019 were subdivided into four periods 
and multilayer recurrence networks within each stage 
were built. The general trend remained U-shaped 
trend: co-movement of crude oil, coal, natural gas, 
and carbon prices were decreasing at the first stage, 
and then it grew progressively during other stages.  

Also, there is a study in which (Kassouri et al., 
2022) used a method based on wavelet analysis to 
investigate the interaction between oil shocks and 
CO₂ emissions intensity for the period 1975-2018. 
Their study presents that wavelet-based for studying 
the level of co-integration between several markets. 
Also, they found that supply and demand in the oil 
market had an inhomogeneous influence on CO₂ 
emissions. The demand-related shocks in the oil 
market lead to a decrease in CO₂ emissions in the U.S. 
Increase in emissions is followed by uncertainty in 
the global oil market. One of the main conclusions 
that we would like to emphasize is that high oil prices 
for mitigating CO₂ do not work for the U.S. case. 
Thus, policymakers should be aware when attaching 
the influence of shocks in the oil market to the 
environment’s resilience. (Hussain et al., 2021) 
employed dynamic copulas and Extreme Value 
Theory to analyze relationships between oil and stock 
markets with the highest number of COVID-19 cases. 
Their study, first of all, confirmed that analyzed data 
is presented to be non-linear, non-stationary, and 
heavy-tailed. Moreover, they found that, probably, it 
was insufficient to represent the influence of COVID-
19 on the dependence of two markets. Their findings 
showed that the degree of dependence between oil 
and stock markets was shifting. Before the pandemic, 
their correlation was presented to be higher and 
became lower during the pandemic. Studying the left 
and right tails of that dependence, scientists found 
that for the right tail there was no significant change, 
while for the left tail there was a significant increase, 
which told about a higher probability of extreme risks 
(downward trend) between oil and stock markets. 

That is, if there was a crisis in the oil market, there 
would be in the stock market. The study of (Wang et 
al., 2014) made important research on (multifractal) 
detrended cross-correlation analysis. In this paper, 
scientists studied standard and multifractal detrended 
cross-correlation characteristics for pairs oil-gas, oil-
CO₂, and gas-CO₂. First of all, we would like to note 
that the cross-correlation scaling exponent i.e., 
generalized Hurst exponent, demonstrated week 
persistent behavior for all pairs. Using rolling 
window dynamics, they presented that in average 
scaling exponent for almost all pair were close to 0.5, 
while for oil-CO₂ dynamics was more persistent with 
different window lengths. Cross-correlation 
coefficient 𝜌  remained close to zero for scales 
less than 100 and then started to increase. Thus, for 
short-term scales correlations were weak, while for 
long-term scales they were stronger. (Zou and Zhang, 
2020) also studied energy and carbon markets using 
cross-correlation analysis based on multifractal 
theory. Their relation was presented to be non-linear 
and multifractal. Also, short-term memory of those 
markets was significantly stronger compared to long-
term memory. Their findings demonstrated that fat-
tails of the probability distribution were the main 
source of multifractality if compare to long-term 
memory. Under normal circumstances, their 
dependence was presented to be anti-correlated. 
(Quantino et al., 2021) devoted their study to 
Brazilian ethanol and other energy-related 
commodities such as Brent oil, natural gas prices, 
CO₂ emissions, and sugar for the period 2010-2020. 
In their study, they also used DCCA with the sliding 
window algorithm to study correlation characteristics 
during different periods. For the whole period, they 
observed weak correlations in short term between 
Brazilian ethanol and CO₂ emissions. For large 
scales, there are strong correlations for sugar. For oil 
prices, there are statistically significant correlations 
up to 128 days, and for natural gas, there are no 
significant correlations. For rolling window 
dynamics, there is a need for additional research, but 
their analysis showed that correlations vary across 
time.  

3 MATERIALS AND METHODS 

Regarding previous studies, we will try to confirm the 
results of previous researchers, present additional 
analysis on co-movement between 3 energy-related 
prices, and construct indicators or indicators-
precursors based on the (MF-)DCCA.  
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The presented work uses daily data of Henry Hub 
natural gas spot prices (US$/MMBTU), Cushing, OK 
WTI spot prices FOB (US$/BBL), and Europe Brent 
spot prices FOB (US$/BBL) (Natural Gas Futures 
Prices (NYMEX), 1997–2021; Spot Prices for Crude 
Oil and Petroleum Products, 1986–2021). The sample 
period of initial data ranged from 7 February 1997 to 
14 December 2021. The dynamics of the 
corresponding data are presented in Figure 1.  

Figure 1: Initial time series of Henry Hub natural gas spot 
prices (gas), Europe Brent spot prices (Eur), and WTI spot 
prices (WTI). 

According to previous studies, exactly 
logarithmic (standardized returns) exhibit 
multifractal characteristics. Therefore, we will 
calculate further indicators regarding the 
standardized returns defined by 

 𝐺(𝑡) = ሾ𝑥(𝑡 + ∆𝑡) − 𝑥(𝑡)ሿ/𝑥(𝑡) 
 

and 
 𝑔(𝑡) ≡ ሾ𝐺(𝑡) − 〈𝐺〉ሿ/𝜎, (1)

 
where 𝑥(𝑡) is a value of our time series; ∆𝑡 is a time 
shift (in our case ∆𝑡 = 1 ); 〈𝐺〉  is the average of 
returns 𝐺; 𝜎 is the standard deviation of 𝐺.  

It should be noted that some of the studied values 
were repeated in our series. Therefore, before 
calculating returns, we preprocessed our data by 
smoothing it, using the moving average of 5 days. 
Figure 2 presents standardized returns of our time 
series data.  

Figure 2: The standardized returns of gas, Eur, and WTI. 
Events with ±3𝜎 are marked by dashed lines. 

From the figure above it can be seen that most of 
the time our data is presented to be correlated to each 
other, but some of the critical events, as an example, 
of WTI spot market cannot be associated with Euro 
Brent or Henry Hub prices. Nevertheless, our 
correlational and multifractal measures should give a 
more comprehensive and clearer picture.  

Also, we can see that most periods in energy 
markets are defined by events that exceed ±3𝜎. The 
WTI returns are characterized by much more 
extensive crashes. Previous studies pointed out that 
such events are located in fat-tails of the probability 
distribution. Figure 3 presents the probability 
distribution of 𝑔(𝑡). 

Figure 3: Probability density functions (pdf) of the 
standardized returns.  

Fat-tails, as it was mentioned, are the main source 
of multifractality and multifractal analysis is of the 
possible solutions for dealing with such risk 
phenomena. 

Further, we apply multifractal analysis of cross-
correlational characteristics for such pairs as WTI-
Eur and WTI-Hub. Most of our results are based on 
the sliding window approach. The idea here is to take 
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a sub-window of a predefined length 𝑤. For that sub-
window, we perform (multifractal-)detrended cross-
correlation analysis, get necessary metrics that are 
appended to the array. Then, the window is shifted by 
a predefined time step ℎ , and the procedure is 
repeated until the time series is completely exhausted. 
Our results will be presented for 𝑤 ∈ ሼ250, 500ሽ 
and ℎ = 1.  

4 ESTIMATION PROCESS 

4.1 DCCA Approach  

For further calculations we consider two time series ሼ𝑥 | 𝑖 = 1, 2, … , 𝑁ሽ and ሼ𝑦 | 𝑖 = 1, 2, … , 𝑁ሽ. Then, 
MF-DCCA considers the following procedure:  

• Construct the cumulative time series  
 𝑋(𝑖) = ሾ𝑥 − 〈𝑥〉ሿ

ୀଵ  

 
and 

 𝑌(𝑖) = ሾ𝑦 − 〈𝑦〉ሿ
ୀଵ  

(2)

 
where 〈𝑥〉  and 〈𝑦〉  are the mean values of the 
analyzed time series.  

• Divide the time series into 𝑁௦ ≡ 𝑖𝑛𝑡(𝑁/𝑠) non-
overlapping segments of equal length 𝑠. We repeat 
the procedure from the end of a time series, since 𝑁 
is usually not an integer multiple of 𝑠, and because of 
it we may neglect the last part of a time series. 
Therefore, we will obtain 2𝑁௦ sub-series.  

• Subsequently, we find local trends 𝑋෨௩(𝑖)  and 𝑌෨ ௩(𝑖) with 𝑚-order polynomials for each sub-series 𝑣  ( 𝑣 = 1, … , 2𝑁௦ ) and detrend each of those 
segments. Thus, the detrended covariances of the 
variances of each box for both time series are given 
by  

 𝑓ଶ(𝑣, 𝑠) = 1𝑠 ሼ𝑋ሾ(𝑣 − 1)𝑠 + 𝑖ሿ−𝑋෨௩(𝑖)ሽ௦
ୀଵ   × ሼ𝑌ሾ(𝑣 − 1)𝑠 + 𝑖ሿ − 𝑌෨ ௩(𝑖)ሽ (3)

 
for each interval 𝑣, 𝑣 = 1, … , 𝑁௦ and 
 𝑓ଶ(𝑣, 𝑠) = 1𝑠 ሼ𝑋ሾ𝑁 − (𝑣 − 1)𝑠 + 𝑖ሿ −௦

ୀଵ   𝑋෨௩(𝑖)ሽ × ሼ𝑌ሾ𝑁 − (𝑣 − 1)𝑠 + 𝑖ሿ − 𝑌෨ ௩(𝑖)ሽ (4)

 
for 𝑣 = 𝑁௦ + 1, 𝑁௦ + 2, … , 2𝑁௦. 

• The detrended covariance fluctuation function 
can be calculated according to  

 𝐹ଶ (𝑠) = 12𝑁௦  𝑓ଶ(𝑣, 𝑠)ଶேೞ௩ୀଵ . (5)

 
• By analyzing the log-log plots of 𝐹(𝑠) 

versus 𝑠 , we can get the scaling behavior of the 
fluctuation function. Particularly, if time series are 
power-law cross-correlated, then we get the relation  

 𝐹(𝑠) ∝ 𝑠ೣ, (6)
 

where ℎ௫௬ is the cross-correlation scaling exponent, 
which is also known as the Hurst exponent 𝐻 (Hurst, 
1951).  

This extension of the Hurst exponent works at the 
same way:  

1) If ℎ௫௬ > 0.5 , the cross-correlations 
between time series are presented to be persistent: an 
increase (a decrease) in one time series is followed by 
an increase (a decrease) in other time series.  

2) If ℎ௫௬ < 0.5 , the cross-correlations 
between time series are presented to be anti-
persistent: an increase in one time series is likely to 
be followed by a decrease in the other time series.  

3) If ℎ௫௬ ≈ 0.5 , both time series follows a 
random walk, i.e., there are no correlations between 
them.  

4) If ℎ௫௬ > 1, both time series are presented to 
be highly correlated and non-stationary.  

Except for the cross-correlational Hurst exponent, 
the DCCA algorithm proposes to calculate the DCCA 
cross-correlation coefficient between time series 
(Zebende, 2011). For each time scale 𝑠, the DCCA 
coefficient is defined as  

 𝜌(𝑠) = 𝐹ଶ (𝑠)𝐹ி௫(𝑠) × 𝐹ி௬(𝑠), (7)

 
where 𝐹ଶ (𝑠)  can be found according to 

equation (5); 𝐹ி(𝑠) is the standard detrended 
fluctuation function and −1 ≤ 𝜌(𝑠) ≤ 1  (Peng 
et al., 1994). In a similar way to the classical 
correlation coefficient, 𝜌 = 1  means that time 
series are positively correlated and co-move 
synchronically; 𝜌 = −1 denotes that time series 
move asynchronically (anti-persistently); 𝜌 = 0 
presents that there is no correlation between two time 
series.  
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In section 5 we will present empirical results 
related to the rolling window dynamics of ℎ௫௬  and 𝜌 . In the next sub-section, we would like to 
describe the modified DCCA method which 
considers multifractal cross-correlation 
characteristics.  

4.2 MF-DCCA Approach 

Multifractal detrended cross-correlation analysis that 
was derived from standard DCCA gives multifractal 
characteristics derived from power-law cross-
correlations of time series (Zhou, 2008). This 
approach modifies standard detrended covariance 
fluctuation function to 𝑞th order:  
 𝐹(𝑠) = ቐ 12𝑁௦ ሾ𝑓ଶ(𝑣, 𝑠)ሿ/ଶଶேೞ

௩ୀଵ ቑଵ/
 (8)

 
for 𝑞 ≠ 0 and 
 𝐹(𝑠) = 𝑒𝑥𝑝 ቌ 14𝑁௦  lnሾ𝑓ଶ(𝑣, 𝑠)ሿଶேೞ

௩ୀଵ ቍ (9)

 
for 𝑞 = 0.  

As in equation (6), 𝐹(𝑠) will follow power-law 
behavior:  

 𝐹(𝑠) ∝ 𝑠ೣ(), (10)
 

where ℎ௫௬(𝑞) represents a multifractal generalization 
of power-law cross-correlation Hurst exponent.  

Values of 𝑞 emphasize the density of small (large) 
fluctuations. If those values are negative, we make an 
ascent on scaling properties of small fluctuations. For 
positive values, scaling properties of the large 
magnitudes dominate. Generally, if our multifractal 
characteristics do not depend on 𝑞 values, the studied 
time series is presented to be monofractal.  

For further calculations, through the multifractal 
exponent 𝜏௫௬(𝑞) = 𝑞ℎ௫௬(𝑞) − 1, we can define the 
singularity strength 𝛼௫௬(𝑞)  and the multifractal 
spectrum 𝑓௫௬(𝛼): 

 𝛼௫௬(𝑞) = ℎ௫௬(𝑞) + 𝑞 𝑑ℎ௫௬(𝑞)𝑑𝑞  (10)

 
and 
 𝑓௫௬(𝛼) = 𝑞ൣ𝛼௫௬(𝑞) − ℎ௫௬(𝑞)൧ + 1. (11)

Here, 𝛼௫௬(𝑞)  can be considered as the local 
fractal dimension, and 𝑓௫௬(𝛼) can be considered as 
the “box-counting” dimension of regions with 
particular singularity strengths.  

According to the study of (Ito and Ohnishi, 2020), 
the greater the level of 𝑞 , the lower the value of 𝛼௫௬(𝑞). If we approach the event with extremely high 
densities (fluctuations), compared to neighboring 
boxes (windows), we will have a low value of 𝑓௫௬(𝛼). 
If critical events would dominate in our system, the 
singularity spectrum would have a long-left tail that 
would indicate the dominance of large events. Right-
tailed multifractal spectrum would indicate 
sensitivity to small events. The symmetrical spectrum 
would show equal distribution of patterns with small 
and large fluctuations.  

Except for those characteristics that were 
presented before, we would like to calculate the width 
of the multifractal spectrum which can be defined as  

 Δ𝛼 = 𝛼௫ − 𝛼. (12)
 
The wider it is, the more complex structure, the 

more uneven distribution we have, and the more 
violent fluctuations on the surface of our time series. 
On the contrary, smaller multifractal width indicates 
that the time series are uniformly distributed. Thus, 
their structure is much simpler.  

Another option is to calculate the proportion of 
small and large peak values that are addressed to the 
multifractal spectrum:  

 Δ𝑓 = 𝑓(𝛼) − 𝑓(𝛼௫), (13)
 
where 𝑓(𝛼) and 𝑓(𝛼௫) are the multifractal 

spectrum’s values that correspond to the smallest and 
the largest singularity values. For Δ𝑓 < 0, the larger 
fluctuation amplitude occurs with a higher possibility 
and for Δ𝑓 > 0, we have the opposite relation (Zhang 
et al., 2019).  

5 EMPIRICAL RESULTS AND 
ANALYSIS 

In this section, we would like to present empirical 
results. which were obtained with the usage of the 
(MF-)DCCA. Our figures present comparative 
dynamics of  

• the cross-correlation coefficient (𝜌);  
• the generalized cross-correlation Hurst exponent 

(ℎ௫௬); 

ISC SAI 2022 - V International Scientific Congress SOCIETY OF AMBIENT INTELLIGENCE

462



• the minimal, maximal, and mean singularity 
strength (𝛼, 𝛼௫, 𝛼); 

• the width of the multifractal spectrum (Δ𝛼);  
• the asymmetry of the multifractal spectrum (Δ𝑓). 
According to our expectations, (MF-)DCCA 

indicators should behave particularly during crisis 
events, i.e., increase or decrease during them. The 
mentioned indicators were calculated for the 
following parameters: 

• sliding windows 𝑤 = 250 days for studying the 
dynamics of short-term periods for the entire set of 
the presented here indicators. In this case, we avoid 
the influence of the dynamics of crises close to each 
other. At the same time, we get more insufficient 
statistics;  

• sliding window 𝑤 = 500  days for studying 
long-term behavior of the DCCA coefficient. In this 
case, the data of previously happened events 
influence the dynamics of currently studied crashes, 
but we get more statistics;  

• time step ℎ = 1 day to get more comprehensive 
statistics;  

• 𝑚 = 2 for fitting local trends in equations (3) 
and (4); 

• time scales 𝑠 are defined in a range from 10 to 
250 and 500 days;  

• the values of 𝑞 ∈ ሾ−10; 10ሿ with a delay 1 to 
have a better view on scales with small and large 
fluctuation density. Nevertheless, the experiments 
with smaller and larges ranges are possible; 

Figure 4 presents the comparative dynamics of the 
(MF-)DCCA indicators for WTI-Eur pair with 𝑤 =250 days for all of them and 𝑤 = 500 days for the 
DCCA coefficient. 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 
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(e) 

 

 
(f) 
 

(g) 
Figure 4: The comparative dynamics of pair WTI crude oil 
spot prices and Europe Brent crude oil prices (WTI-Eur) 
with the DCCA coefficient (a), the cross-correlated 
generalized Hurst exponent (b), the maximal singularity 
strength 𝛼௫  (c), the minimal singularity strength 𝛼 
(d), the mean singularity strength 𝛼 (e), the width of 
the singularity spectrum Δ𝛼 (f), and its asymmetry Δ𝑓 (g).  

Generally, according to Figure 4, we can that our 
indicators respond in a particular way to our crashes. 

The cross-correlational coefficient, in Figure 4 (a) 
demonstrated co-movement of our time series for a 
long-term period. From Figure 4 (b) we can see that ℎ௫௬ increases before the crash, i.e., they demonstrate 
persistent behavior, and decreases after it, that is, both 
time series become more mean-reverting during the 
crash. Before the critical event, both commodities 
seem attractive for trading, but the crash that may be 
caused by certain geopolitical events forces users to 
transfer their funds from those energy commodities to 
another product.  

Figure 4 (c-f) demonstrates that singularity 
exponents and the width of 𝑓(𝛼) become higher. It 
means that during critical phenomena different time 
scales in the studied time series respond 
inhomogeneously: their cross-correlated dynamics 
start to exhibit different patterns and more fluctuated 
(rough) behavior.  

Figure 4 (g) demonstrates a decrease during 
critical events. That is a signal that the ends of 𝑓(𝛼) 
become more uneven. If Δ𝑓 decrease, it means that 
the multifractal spectrum has a longer left-tail. More 
left-tailed 𝑓(𝛼)  demonstrates multifractal 
predominance of the fluctuations with large 
magnitudes. In the opposite case, if Δ𝑓 increases, our 
spectrum can be distributed more symmetrically or 
closer to the right side. In other words, fluctuations 
can be distributed homogeneously or small 
fluctuations will have greater density.  

Next, in Figure 5, let us present (MF-)DCCA 
measures for WTI-gas pair.  

 
(a) 
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(b) 
 

(c) 
 

(d)  

(e) 
 

(f) 
 

(g) 
Figure 5: The comparative dynamics of pair WTI crude oil 
spot prices and Henry Hub natural gas spot prices (WTI-
gas) with the DCCA coefficient (a), the cross-correlated 
generalized Hurst exponent (b), the maximal singularity 
strength 𝛼௫  (c), the minimal singularity strength 𝛼 
(d), the mean singularity strength 𝛼 (e), the width of 
the singularity spectrum Δ𝛼 (f), and its asymmetry Δ𝑓 (g). 

Assessing Energy-related Markets through Multifractal Detrended Cross-correlation Analysis

465



According to the results in Figure 5, we can see 
the same patterns in our indicators. The DCCA 
coefficient grows during abnormal phenomena for 
short- and long-term periods. The cross-correlational 
Hurst exponent demonstrates anti-persistent behavior 
of time series during crisis. Their multifractality 
becomes stronger and wider. Finally, 𝑓(𝛼) 
demonstrates left-tailed asymmetry during critical 
phenomena for both time series.  

6 CONCLUSIONS 

Energy-related markets incorporate necessary 
information about sustainable development not only 
in the particular state but in the whole world in 
general. Policymakers and ordinary traders should 
have full knowledge about all the supply and demand 
shocks, which lead to irreversible, non-equilibrium, 
chaotic, and, studied in this paper, multifractal 
properties.  

In this paper, we have analyzed previous studies 
related to the topic of the analysis of complex 
phenomena in energy-related time series, and 
considering it, we have applied the (MF-)DCCA 
method to present own analysis of these markets and 
their varying efficiency.  

In this study, we have analyzed (multifractal) 
cross-recurrent characteristics of such systems as 
daily data of Henry Hub natural gas spot prices, WTI 
spot prices, and Europe Brent spot prices. We have 
compared WTI with Euro Brent and WTI with Henry 
Hub natural gas.  

Using the sliding window approach, we have 
calculated such measures as the cross-correlation 
coefficient for long-term scale, the Hurst exponent, 
the minimal, maximal, and mean singularity 
exponents, the width of the multifractal spectrum, and 
its asymmetry. All of the presented indicators give 
reliable information on the shocks in the energy 
markets. As expected, the correlation coefficients 
demonstrate collective behavior between studied time 
series during crisis events. The Hurst exponent ℎ௫௬ as 
the classical one increases before the crash, 
demonstrating trending behavior and decreases 
during it. Multifractal indicators presented that time 
series demonstrate extensive multifractality during 
crisis states.  

These results may be useful for regulators, 
governments, institutional investors who invest or 
trade in energy-related markets. This will help them 
to develop portfolios for better decision-making 
processes during worldwide trends aimed at 
improving sustainable development. In the future, on 

the basis of such indicators of the cross-correlation 
and multifractal properties, it will be possible to 
create highly reliable risk management systems that 
will allow to identify and forecast crashes more 
precisely.  
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