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the fact that the fuzzification of classical entropy and recurrence 
approaches opens up prospects for constructing effective and reliable 
indicators-precursors of critical events in the studied complex systems. 
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Introduction 

Financial systems are complex, nonlinear, and nonstationary 
partially due to the plurality of trading agents that work either 
independently or interact with each other and form multiple 
subsystems. The evolution of a market is reflected in their cooperation 
that is based on a set of nonlinear rules and reflected in temporal and 
spatial structures at different scales [12].  

The stock market system also has complex dynamical behavior and 
nonlinear characteristics. The nonlinear and nonstationary information 
hidden in the stock indices signals cannot be obtained by traditional 
linear methods [92]. Nonlinear measures may provide valuable 
insights in addition to the time- and frequency-domain features by 
evaluating the complexity or irregularity of time series [47]. Great 
attention has gained the studies devoted to the nonlinear complex 
dynamical systems, which has resulted in the development of concepts 
and methods devoted to fractal dimensions [28, 35, 51], bifurcations 
[16, 25, 68], and strange attractors [19, 29, 30, 74, 79]. While different 
interpretations of complexity may be assumed, entropy and recurrence 
analysis certainly play a role in the estimation of time series 
complexity and predictability. One of the most commonly used 
informational measures of complexity are approximate entropy 
(ApEn) [64], sample entropy (SampEn) [71], fuzzy entropy (FuzzyEn) 
[14, 96, 97], conditional entropy [80], distribution entropy [47], and 
permutation entropy (PEn) [7].  

Great perspectives here present the concept of fuzzy sets in the 
combination with the information theory and recurrence analysis.  

The concept of fuzzy set entropy was first introduced by De Luca 
and Termini [17], which defined entropy as “measuring the degree of 
ambiguity in a generalized set”. This definition of fuzzy entropy is 
different from the definition of Shannon entropy and its inheritors – 
Approximate and Sample entropies.  

In the ApEn and the SampEn algorithms, the similarity of 
embedded vectors is based on the Heaviside function [71], which can 
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be considered as a two-state classification. However, the boundaries 
of the real-world systems can be ambiguous, making it difficult to 
determine if an input pattern belongs to a specific class [99]. 
Moreover, both the ApEn and the SampEn give unreliable or 
undefined results for short signals [6, 47, 73]. To overcome these 
shortcomings of the SampEn, fuzzy sets and fuzzy entropy (FuzzEn) 
based on the concept of the ApEn and the SampEn [14] were 
introduced. The fuzzy membership function shows that continuous 
boundaries guarantee continuity. The FuzzEn was found to be 
relatively consistent and less dependent on data length [15]. 
Therefore, the FuzzEn approach has been used in a variety of real-
world applications, from neuroscience and biomedical engineering 
[14, 32, 69, 97] to engineering and financial research [2, 38, 46, 93, 
94, 103, 108]. 

Another type of information entropy was proposed by Bandt and 
Pompe which is called permutation entropy [7]. This approach relies 
on the ordinal structure of a time series, deriving the average amount 
of information from the constructed patterns. The problem with the 
classic PEn is that it neglects the amplitude of a time series, sensitive 
to the choice of the embedding dimension and time delay as the 
previous two entropies. Also, its multiscale version needs long time 
series because of the procedure of coarse-graining [34]. Thus, to 
overcome such issues, the fuzzy permutation entropy (FuzzPEn) was 
proposed [102], considering it to be robust to noise and suitable for 
short time segments. 

The concept of recurrence plots was introduced by Eckmann, 
Kamphorst, and Ruelle [20]. The idea behind their approach was to 
give a new graphical representation of the recurrence states of a 
dynamical system and capture essential features of its structure. Since 
the recurrence plot can be easily constructed and, on its basis, can be 
derived different quantitative measures of complexity and chaos such 
as the Lyapunov exponent [39], information and correlation 
dimension [23, 29], and other measures of recurrence quantification 
analysis [53, 81, 95], it has been wildly applied within different fields 
of science: neuroscience [1], finance [8, 90], cognitive science [18, 
70], materials science [21, 24, 31, 33, 37, 72], atmospheric science 
[22, 48, 52, 88, 109], anthropology [40], engineering [50, 67, 89, 
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106], music [54, 76], dynamical systems theory [55, 56, 100, 101, 
105], network traffic classification [57], cryptography [98]. 

The particular problem with the recurrence plots is the threshold 
selection. Like with the ApEn or the SampEn, the graphical 
representation of RP is sensitive to this parameter. Pham proposed to 
measure the similarity between two phase-space states through fuzzy 
c-means clustering that produces membership grades ranging between 
zero and one [58, 62]. Such an approach can not only solve the 
problem of threshold selection but also improve system dynamics 
visualization. 

For the last decades, these methods have been extensively applied 
to various disciplines of econophysics [4, 36, 43, 44, 78] and financial 
phenomena [5, 8, 41, 42, 45, 90, 104, 107]. Therefore, this paper 
applies classic and fuzzy-based complexity indicators to the price 
sequence of the stock market index represented by the Dow Jones 
Industrial Average (DJIA) index for monitoring the developments of 
its unpredictability or complexity across time. In our study, we 
analyze the four most important crash periods in the history of the 
stock market with the classic entropy methods, recurrence plots, and 
their fuzzy-based analogs. In addition, using the sliding time window 
analysis, we observed how the complexity of the studied crashes 
changes with time. Indicators (indicators-precursors) of crisis 
phenomena are promising here, not only for ordinary stock market 
traders, but also for the global policymakers who will be able to find it 
extremely important to make decisions for the short, mid, and long-
term, recognizing the increase in complexity in the market promptly. 

Materials and Methods 

To compare the classic information and recurrent methods with the 
fuzzified ones and to present indicators (indicators-precursors) of the 
crashes in the stock market, we have chosen four major crisis events 
of 1929, 1987, 2008, and 2020 years relying on the list of stock 
market crashes and bear markets provided in [49]. The sub-series of 
crashes were obtained from the daily data of the DJIA index.  

Most of the studied measures are calculated regarding the 
standardized returns of the corresponding crash events, where returns 
are calculated as  
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 𝐺(𝑡) = ln 𝑥(𝑡 + Δ𝑡) − ln 𝑥(𝑡) ≅ [𝑥(𝑡 + Δ𝑡) − 𝑥(𝑡)] 𝑥(𝑡)⁄ , (1) 

and their standardized version can be obtained as 

 𝑔(𝑡) ≅ [𝐺(𝑡) − 〈𝐺〉] 𝜎⁄ , (2) 

with 〈∙〉 corresponding to the mean value and 𝜎 to the standard 
deviation of 𝐺.  

During our experiments, we have found that  
 standard Shannon, approximate, and their fuzzy analogs give 

the best results for the standardized returns; 
 standard permutation entropy and its fuzzy analog represent the 

most robust results for the initial time series;  
 standard recurrence plots give the clearest representation of the 

recurrent nature of crash events for the standardized variant of the 
initial time series. Fuzzy recurrence plots do not strictly depend on the 
initial representation of the studied system, i.e., your fuzzy recurrence 
diagram will be approximately the same whether you calculate it for 
the initial time series, its standardized representation, or returns.  

All calculations that are performed in this study are realized in the 
web-interactive computational environment called Jupyter Notebook. 
The corresponding Jupyter document is realized with the Python 
programming language. The “Entropy Hub” package [27] served as 
the basis for the implementation of some types of entropy. All time 
series and the implemented program are freely available at [26].  

Each of the presented methods except Shannon entropy relies on 
the phase-space reconstruction approach described by Takens’ 
embedding theorem [91].  

The presented fuzzified entropies use such membership functions as  
 the exponential fuzzy function (default): 

 𝜇(𝑥, 𝑟1, 𝑟2) = exp (−
𝑥𝑟2

𝑟1
), (3) 

where 𝑟1 and 𝑟2 are the width and gradient of the boundary of the 
fuzzy function;  

 the sigmoid fuzzy function (sigmoid): 
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 𝜇(𝑥, 𝑟1, 𝑟2) =
1

1 + exp (
𝑥 − 𝑟2
𝑟1

)
; (4) 

 the linear fuzzy function (linear) according to [27]: 

 𝜇(𝑥) = exp(−(𝑥 − 𝑥min)). (5) 

For both exponential and sigmoid membership functions were 
tested different parameters 𝑟1 and 𝑟2. During experiments we have 
found that 𝑟1 = 0.45 and 𝑟2 = 2.0 give reasonable and robust results. 
However, further experiments may be carried out. 

Fig. 1. represents the dependence of the presented fuzzy functions 
on different x-values with the predefined parameters 𝑟1 and 𝑟2 for 
default and sigmoid functions.  

 

 
 (a) (b) 

 
(c) 

Fig. 1. The dependence of default (a), sigmoid (b), and linear (c) 
membership functions on different x-values 
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From Fig. 1 we can see that the highest membership degree is 
expectable for x-values with the closest to zero distance, while the 
opposite condition is true for the values with the highest distance. 

Results were obtained within the sliding window framework. For 
this purpose, the subset of a series (window), for which there were 
calculated entropy measures, was selected. Then, the window was 
displaced along the time series in a Δ𝑤 increment (in our case,  
Δ𝑤 = 1), and the procedure was repeated until all the studied series 
had been exhausted. During the experiments, we have found that the 
window size 𝑤 = 250 days represents the change of complexity for 
the studied crashes in the most correct way. 

Further, by comparing the dynamics of the actual time series and 
the corresponding measures of complexity, we can judge the 
characteristic changes in the dynamics of the behavior of complexity 
with changes in the stock index. If the constructed measure of 
complexity behaves in a definite way for all periods of crashes, for 
example, decreases or increases during the pre-critical period, then it 
can serve as an indicator or precursor of such crash phenomenon [9-
11, 82-86]. 

Shannon entropy 

Shannon entropy (ShEn), founded by Claude Shannon [77], is the 
average (expected) amount information that we can get from an event. 
This quantity is expressed through the probability of a random 
variable 𝑋 and its amount of information 𝐼(𝑋) = − ln 𝑝(𝑋), and can 
be defined as  

 ShEn(𝑋) = −∑𝑝(𝑥𝑖) ln𝑝(𝑥𝑖)

𝑁

𝑖=1

, (6) 

where 𝑝(𝑥𝑖) is the probability of occurring the value 𝑥𝑖 of random 
variable 𝑋, and ln 𝑝(𝑥𝑖) defines the amount of information conveyed 
in 𝑥𝑖.  

In Fig. 2 is presented the dynamics of the classic ShEn calculated 
for the studied crashes.  

In Fig. 2 we can see that during the crash period the dynamics of 
the classic ShEn begins to decline, indicating a decrease in the 
average amount of information that these events represent. This gives 
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us an idea that the returns of these events are distributed more 
ununiformly, i.e., there are a fraction of returns that are more probable 
compared to others.  
 

 

 (a) (b) 

 

 (c) (d) 

Fig. 2. The dynamics of the classic ShEn along with the crashes of 1929 (a), 
1987 (b), 2008 (c), and 2020 (d) in the DJIA index 

Fuzzy Shannon entropy 

The measure of fuzzy information gained from a fuzzy system is 
known as fuzzy entropy. Compared to the classic ShEn, fuzzy entropy 
does not rely on a probabilistic concept since it is based on the 
concept of membership function 𝜇(𝑥) ∈ [0, 1], which quantifies the 
degree of membership of a particular element 𝑥 to a set. In a similar 
way to the ShEn, fuzzy Shannon entropy (FuzzShEn) can define how 
complex is presented to be the studied fuzzy set 𝐴.  
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Lotfi Zadeh, the founder of fuzzy set theory [99], proposed to 
quantify the uncertainty of a fuzzy event as a weighted ShEn, where 
the membership values are regarded as weights [17]:  

 FuzzShEn(𝑋) = −𝐾∑𝜇(𝑥𝑖) ln 𝜇(𝑥𝑖)

𝑁

𝑖=1

, (7) 

where 𝜇(𝑥𝑖) ∈ [0, 1] is the value obtained from fuzzy membership 
function, and 𝐾 is a positive constant (in our case, 𝐾 = 1). 

In Fig. 3 are presented the results of the FuzzShEn, according to 
Zadeh, calculated with the default exponential function (3) for the 
studied crashes.  

 

  
 (a) (b) 

 
 (c) (d) 

Fig. 3. The dynamics of the FuzzShEn calculated according to equation (7) 
with the default exponential function along with the crashes of 1929 (a), 

1987 (b), 2008 (c), and 2020 (d) in the DJIA index 
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In Fig. 3 we see that the behavior of the FuzzShEn according to 
Zadeh with the default exponential function is presented as 
asymmetric compared to the classic ShEn. We may say that the 
dynamics of this indicator is lagged since the biggest decline that 
could be before or during the crash phenomena, appears after each 
crash. We could conclude that Zadeh’s approach in the combination 
with the default function might be wrong but further improvements 
and experiments could be done.  

In Fig. 4 is presented the FuzzShEn according to Zadeh (7) with 
the sigmoid membership function (4).  

 
 

 
 (a) (b) 

 
 (c) (d) 

Fig. 4. The dynamics of the FuzzShEn calculated according to equation (7) 
with the sigmoid membership function along with the crashes of 1929 (a), 

1987 (b), 2008 (c), and 2020 (d) in the DJIA index 
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The results presented in Fig. 4 give us an idea that the sigmoid 
membership function is a reasonable choice for constructing an 
effective indicator of crisis phenomena. According to the classic 
ShEn, the FuzzShEn decreases during a crisis event, indicating a 
decrease in the degree of randomness during this period of time. Also, 
the fuzzification procedure makes the presented indicator more 
smoothed in comparison with the classic Shannon entropy, filtering 
noisy oscillations in its dynamics and focusing only on the most 
significant crises. 

In Fig. 5 is presented the FuzzShEn according to Zadeh’s equation 
(7) with the linear membership function (5).  

 
 

 
 (a) (b) 

 
 (c) (d) 

Fig. 5. The dynamics of the FuzzShEn calculated according to equation (7) 
with the linear membership function along with crashes of 1929 (a), 1987 

(b), 2008 (c), and 2020 (d) in the DJIA index 



N e u ro - F uz z y  M o d e l i n g  T e c hn i qu e s  i n  Eco n o mi cs  2021, VOL. 10 

14 

The results in Fig. 5 illustrate that the FuzzShEn with the 
membership function defined in (5) became more linear. Before each 
crash event, our indicator starts to decline, indicating more 
deterministic behavior before the collapse. The studied crashes in 
Fig. 5 are followed by a large decrease in the dynamics of the 
FuzzShEn. These results are presented to be a little worse than for the 
sigmoid fuzzy function, but even these one gives a perspective for 
building effective algorithmic strategies and forecasts. 

De Luca and Termini [17] suggested that the corresponding 
formula of entropy should be defined as  

 𝑓(𝐴) = 𝐻(𝐴) + 𝐻(�̅�), (8) 

where 𝐻(𝐴) is a Shannon entropy of fuzzy set 𝐴, and �̅� is its 
complement.  

Therefore, for defining the complexity (uncertainty) of the studied 
system, according to De Luca and Termini, we can formulate the 
FuzzShEn as  

 
FuzzShEn(𝑋) = −∑𝜇(𝑥𝑖) ln 𝜇(𝑥𝑖) +

𝑁

𝑖=1

+ (1− 𝜇(𝑥𝑖)) ln(1 − 𝜇(𝑥𝑖)). (9) 

 
Standard fuzzy entropy 𝐻(𝐴) implies following conditions:  
 𝐻(𝐴) = 0 if all 𝜇(𝑥𝑖) approximately equal 0 or 1; 
 𝐻(𝐴) is maximal if all 𝜇(𝑥𝑖) approximately equal to 0.5; 
 𝐻(𝐴) ≥ 𝐻(𝐵), where 𝐵 is a sharpened version of 𝐴; 
 𝐻(𝐴) = 𝐻(�̅�).  
In Fig. 6 is presented the FuzzShEn according to De Luca and 

Termini’s entropy in the combination with the default exponential 
membership function (3).  

The results obtained in Fig. 6 according to De Luca and Termini’s 
approach seem to be better, compared to Zadeh’s entropy. Calculating 
it with the default exponential function some of our results 
demonstrate asymmetric dynamic as in Fig. 6a and Fig. 6c. However, 
we may see the decrease of the corresponding FuzzShEn for the 
crashes of 1987 (Fig. 6b) and of 2020 (Fig. 6d). Nevertheless, even 
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their dynamics seem to be lagged as in Zadeh’s approach, and, in 
places, their dynamics seem to be noisier.  

 

 

 (a) (b) 

 

 (c) (b) 

Fig. 6. The dynamics of the FuzzShEn calculated according to equation (9) 
with the default exponential membership function along with the crashes  

of 1929 (a), 1987 (b), 2008 (c), and 2020 (d) in the DJIA index 

De Luca and Termini’s approach in the combination with the 
default membership function remains as unreliable as Zadeh’s 
FuzzShEn method.  

In Fig. 7 is presented the FuzzShEn according to De Luca and 
Termini’s entropy (9) in the combination with the sigmoid 
membership function (4). 
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 (a) (b) 

 

 (c) (d) 

Fig. 7. The dynamics of the FuzzShEn calculated according to equation (9) 
with the sigmoid membership function along with the crashes of 1929 (a), 

1987 (b), 2008 (c), and 2020 (d) in the DJIA index 

 
In Fig. 7 is presented the behavior of the FuzzShEn according to 

De Luca and Termini. This Shannon entropy modification in 
combination with the sigmoid membership function gives reliable and 
robust results during crash events. In the case of the studied crashes, 
we see that the FuzzShEn is an indicator of critical phenomena rather 
than a precursor. With the fuzzification, it behaves smoothly and 
indicates the increase of persistency for all of the crashes.  

Fig. 8 presents FuzzShEn (9) with the linear membership function 
(5). 
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 (a) (b) 

 

 (c) (d) 

Fig. 8. The dynamics of the FuzzShEn calculated according to equation (9) 
with the linear membership function along with the crashes of 1929 (a),  

1987 (b), 2008 (c), and 2020 (d) in the DJIA index 

For this membership function, the dynamics of the FuzzShEn is also 
more linear. Nevertheless, the indicator starts to decline during each of the 
studied crashes, indicating more deterministic behavior during the collapse.  

Approximate entropy 

The proposed entropy allows us to quantify how regular or 
irregular is presented to be studied data. The idea here is to measure 
the likelihood that patterns in 𝑑𝐸-dimensional space will remain 
approximately the same in 𝑑𝐸 + 1-dimensional space. For entropy 
indicators, we have chosen 𝑑𝐸 = 3 and 𝜏 = 1. 
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For step 1, we reconstruct phase space of the initial time series 
according to Takens’ embedding theorem [91] as it is required by the 
procedure:  

�⃗�(𝑖) = {𝑥(𝑖), 𝑥(𝑖 + 1),… , 𝑥(𝑖 + 𝑑𝐸 − 1)}, 

  1 ≤ 𝑖 ≤ 𝑁 − 𝑑𝐸 + 1. 

(10) 

Then, we want to calculate how distant remain other vectors from 

the considered vector �⃗�(𝑖) within the predefined threshold: 

 𝑑[�⃗�(𝑖), �⃗�(𝑗)] = max
𝑘=0,1,…,𝑑𝐸−1

(|𝑥(𝑖 + 𝑘) − 𝑥(𝑗 + 𝑘)|), (11) 

and for each 𝑖-th vector, we count the number of 𝑗-th vector that does 
not exceed the predefined radius 𝑟. In our case, 𝑟 = 0.45, since 
exactly for this value this method demonstrates appropriate behavior 
during critical states. After counting it, we want to measure the 
probability of finding such vectors that will remain similar to 𝑖-th 
vector, where maximum absolute variation among their scalar 
components does not exceed the tolerance 𝑟: 

 𝐶𝑖(𝑟) =
Θ(𝑟 − 𝑑[�⃗�(𝑖), �⃗�(𝑗)])

𝑁 − 𝑑𝐸 + 1
, (12) 

where Θ(∙) is a Heaviside function: ℝ → (0, 1). 
After it, we define the mean value of 𝐶𝑖(𝑟):  

 𝜑𝑑𝐸(𝑟) =
∑ ln 𝐶𝑖(𝑟)
𝑁−𝑑𝐸+1
𝑖=1

𝑁 − 𝑑𝐸 + 1
, (13) 

and the likelihood of patterns in 𝑑𝐸-dimensional space to remain the 
same in 𝑑𝐸 + 1-dimensional space can be expressed using the 
following equation:  

 ApEn(�⃗�, 𝑑𝐸, 𝑟) = 𝜑
𝑑𝐸(𝑟) − 𝜑𝑑𝐸+1(𝑟). (14) 

Despite ApEn usability in different fields of science, it is strongly 
dependent on the signal length and biased statistics due to the 
concavity of the logarithm function and self-matches when we 
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compute 𝐶𝑖(𝑟) [64-66]. Also, ApEn can provide unexpected variations 
for different 𝑟 and 𝑑𝐸 [13, 65]. 

Fuzzy modification of ApEn that includes membership degree 
overcome such cases.  

In Fig. 9 are illustrated results of the classic ApEn for the studied 
DJIA crashes. 

 

 (a) (b) 

 

 (c) (d) 

Fig. 9. The dynamics of the classic ApEn along with crashes of 1929 (a), 
1987 (b), 2008 (c), and 2020 (d) in the DJIA index 

The interpretation of the classic ApEn is similar to the ShEn: with 
the higher degree of predictability (persistency), the values of ApEn 
become lower. That is, with the higher probability of two trajectories 
in the phase-space remaining close to each other, we expect this 
indicator to decrease. This behavior is true for crisis events, which is 
confirmed by the presented results. 
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Fuzzy approximate entropy 

After Shannon presented his entropy as a basis of information 
theory, different modifications have been proposed. One of them is 
Fuzzy Approximate Entropy (FuzzApEn). This approach excludes self-
similarity between studied vectors, and instead Heaviside function 
that produces either 0 or 1 for similar vectors, it adopts a fuzzy mem-
bership function, which in the case of the FuzzApEn will associate the 
similarity between two vectors with a real value within range [0, 1].  

The difference can be seen on the stage of embedded matrix 
construction, where for the constructed embedded vectors we remove 
the baseline trend: 

 
�⃗�(𝑖) = [𝑥(𝑖), 𝑥(𝑖 + 1),… , 𝑥(𝑖 + 𝑑𝐸 − 1)] − 𝑥0(𝑖), 

  𝑖 = 1,… , 𝑁 − 𝑑𝐸 + 1, 

(15) 

where 𝑥0(𝑖) =
1

𝑑𝐸
∑ 𝑥(𝑖 + 𝑗)
𝑑𝐸−1
𝑗=0 . Then, the distance between each 

consecutive embedded vector is computed as  

 
𝑑[�⃗�(𝑖), �⃗�(𝑗)] = max|�⃗�(𝑖) − �⃗�(𝑗)|,  

𝑖 ≥ 1, 𝑗 ≤ 𝑁 − 𝑑𝐸 + 1. 

(16) 

In the original approximate entropy, the degree of similarity 
between two vectors is expressed through Heaviside function. Fuzzy 
modification uses a membership function for measuring the distance 

between trajectories 𝑖 and 𝑗: 𝐷𝑖,𝑗 = 𝜇(𝑑[�⃗�(𝑖), �⃗�(𝑗)]). Then the 

function 𝜑𝑑𝐸  is calculated as 

 𝜑𝑑𝐸 =
1

(𝑁 − 𝑑𝐸 + 1)
∑ (

1

(𝑁 − 𝑑𝐸)
∑ 𝐷𝑖,𝑗

𝑁−𝑑𝐸

𝑗=1,𝑗≠𝑖

) .

𝑁−𝑑𝐸+1

𝑖=1

    (17) 

Finally, 

 FuzzApEn(�⃗�, 𝑑𝐸) = −[ln𝜑
𝑑𝐸+1 − ln𝜑𝑑𝐸]. (18) 
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Fig. 10 presents the results of the FuzzApEn calculations for the 
studied crash with the usage of the default exponential function.  

 

 (a) (b) 

 

 (c) (d) 

Fig. 10. The dynamics of the FuzzApEn calculated with the default 
exponential membership function along with the crashes of 1929 (a),  

1987 (b), 2008 (c), and 2020 (d) in the DJIA index 

In Fig. 10, compared to the classic ApEn, the FuzzApEn method 
demonstrates a similar pattern for critical events. We can see that the 
fuzzy indicator based on the default exponential membership function 
shows a significant decrease during the crash events. Moreover, it seems 
to be more robust to the time series length (time localization) and the 
choice of the parameters of the model. We have found that despite the 
chosen parameters 𝑟1 and 𝑟2 in equation (3), this indicator does not change 
seriously despite different combinations of the mentioned variables.  
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In Fig. 11 are presented the results of the FuzzApEn in the 
combination with the sigmoid membership function.  

 

 

 (a) (b) 

 

 (c) (d) 

Fig. 11. The dynamics of the FuzzApEn calculated with the sigmoid 
membership function along with the crashes of 1929 (a), 1987 (b),  

2008 (c), and 2020 (d) in the DJIA index 

 
The results presented in Fig. 11 look identical to those from 

Fig. 10. During crash events the FuzzApEn declines rapidly, 
indicating the rise of similarity during the evolution of the trajectories 
in the phase-space.  

The calculations of the FuzzApEn of the last membership function 
are presented in Fig. 12.  
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 (a) (b) 

 

 (c) (d) 

Fig. 12. The dynamics of the FuzzApEn calculated with the linear 
membership function along with the crashes of 1929 (a), 1987 (b), 2008 (c), 

and 2020 (d) in the DJIA index 

 
Fig. 12 presents the results of the FuzzApEn for the linear 

membership function. The crashes of both 1929 and 1987 years 
according to this approach are identified in advance with the 
FuzzApEn. In Figs. 12a and 12b, the FuzzApEn declines before the 
crash, indicating more determined dynamics before crash appears to 
be. The results in Fig. 12c are presented to be not as reliable as the 
previous figures. The dynamics of the FuzzApEn for this crash 
demonstrates a less precuring signal compared to previous results. In 
this case, the behavior of the indicator looks shifted from the studied 
crisis, if we focus on the largest drop in entropy. 
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Permutation entropy 

As in previous types of entropy, we reconstruct the time series of 
𝑁 values and a fixed embedding dimension 𝑑𝐸 and time delay 𝜏, 
forming the embedded matrix we form temporal vector sequences  

 �⃗�(𝑖) = {𝑥(𝑖), 𝑥(𝑖 + 1),… , 𝑥(𝑖 + [𝑑𝐸 − 1]𝜏)}, (19) 

where 𝑁 − [𝑑𝐸 − 1]𝜏 vectors are obtained.  

Then, each element of �⃗�(𝑖) is transformed into numeric ranks 
according to their order. As an example, for 𝑑𝐸 = 2 and 𝜏 = 1, and 

time series �⃗� = (−0.1, 0.4, 3.2, 12.0, 6.5), embedded matrix will have 

the following pairs: �⃗�(1) = {−0.1, 0.4}, �⃗�(2) = {0.4, 3.2},  
�⃗�(3) = {3.2, 12.0}, �⃗�(4) = {12.0, 6.5}.  

Next, we form ordinal sequences according to their numerical 

order. Such pairs as �⃗�(1), �⃗�(2), �⃗�(3) satisfy 𝑥(𝑖) < 𝑥(𝑖 + 1) and one 

pair �⃗�(4) satisfy 𝑥(𝑖) > 𝑥(𝑖 + 1). According to PEn, it is possible to 
consider 𝑑𝐸! possible permutations of order 𝑑𝐸. Following our 
example, there are only 2! considered patterns: 𝜋1 = {0, 1},  
𝜋2 = {1, 0}. 

For each pattern, we determine its relative frequency:  

 𝑝(𝜋) =
#{�⃗�(𝑖) has pattern 𝜋}

𝑁 − [𝑑𝐸 − 1]𝜏
. (20) 

The probability of finding 𝜋1 is 3/4 and of 𝜋2 is 1/4, i.e., we form 

the probability distribution 𝑃 = {𝑝(𝜋1), … , 𝑝(𝜋𝑑𝐸)}. Finally, the PEn 

can be calculated regarding classic Shannon entropy (6):  

 PEn(�⃗�, 𝑑𝐸) = −∑𝑝(𝜋𝑖) ln𝑝(𝜋𝑖)

𝑑𝐸

𝑖=1

. (21) 

According to our example, the PEn can be calculated as  
−(3/4) ln(3/4) − (1/4) ln(1/4) ≈ 0.56.  

In Fig. 13 there are presented results of the classic PEn calculated 
for the initial time series of the studied fragments.  
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 (a) (b) 
 

 

 (c) (d) 

Fig. 13. The dynamics of the PEn along with the crashes of 1929 (a),  
1987 (b), 2008 (c), and 2020 (d) in the DJIA index 

In Fig. 13 we can see that the classic PEn appears to be the 
indicator precursor of the studied crashes. Long before the onset of the 
crisis, entropy begins to subside, indicating the extraordinary 
sensitivity of the series at the beginning of a particular point. This is 
especially evident for the 2008 crisis. In terms of the classic PEn, we 
may say that before the crash a particular ordinal pattern becomes 
more probable compared to other variants. The dynamics of the time 
series makes it clear that the pattern of upward dynamics  
(𝜋 = {0, 1, 2}) is more likely to occur, making the entropy values 
smaller. 



N e u ro - F uz z y  M o d e l i n g  T e c hn i qu e s  i n  Eco n o mi cs  2021, VOL. 10 

26 

Fuzzy permutation entropy 

Similarly to the PEn, we construct the embedded matrix. Next, we 

need to find the distance between consecutive vectors �⃗�(𝑖) and �⃗�(𝑗) 
of the embedded matrix 𝑋. According to ApEn, we would find the 
largest difference between them, and if they would not exceed the 
predefined threshold 𝑟, we would count them.  

According to the FuzzPEn, we will use another measure of 
distance between studied embedded vectors. In our case, we will use 

at least 𝑘0(�⃗�, �⃗⃗�) number of swaps to transfer 𝑅�⃗⃗� to 𝑅�⃗⃗�. For instance, if 

𝑅�⃗⃗� = (1, 2, 3, 5, 4) and 𝑅�⃗⃗� = (5, 1, 2, 3, 4), then 𝑘0(�⃗�, �⃗⃗�) = 3.  
Therefore, distances are computed as  

 𝑑[�⃗�(𝑖), �⃗�(𝑗)] = {
𝑘0(�⃗�(𝑖), �⃗�(𝑗)), 𝑗 ≠ 𝑖,

0, 𝑗 = 𝑖.
 (22) 

At the next step each 𝑑[�⃗�(𝑖), �⃗�(𝑗)] is standardized by the 
maximum inversion among those which are computed:  

 𝑑𝑖𝑗̅̅ ̅̅ =
𝑑[�⃗�(𝑖), �⃗�(𝑗)]

max
𝑖,𝑗
{𝑑[�⃗�(𝑖), �⃗�(𝑗)]}

. (23) 

Through the fuzzy membership functions, according to (3)-(5), we 

calculate the similarity degree 𝑆𝑖𝑗
𝑑𝐸  for the argument 𝑑𝑖𝑗̅̅ ̅̅ . 

Next, we calculate the averages of similarity degree 𝜑𝑑𝐸  at states 

𝑑𝐸: 

 𝜑𝑑𝐸 =
1

(𝑁 − 𝑑𝐸 + 1)
∑

∑ 𝑆𝑖𝑗
𝑑𝐸𝑁−𝑑𝐸

𝑗=1,𝑖≠𝑗

𝑁 − 𝑑𝐸

𝑁−𝑑𝐸+1

𝑖=1

, (24) 

and 𝑑𝐸 + 1:  

 𝜑𝑑𝐸+1 =
1

(𝑁 − 𝑑𝐸)
∑

∑ 𝑆𝑖𝑗
𝑑𝐸+1𝑁−𝑑𝐸−1

𝑗=1,𝑖≠𝑗

𝑁 − 𝑑𝐸 − 1
.

𝑁−𝑑𝐸

𝑖=1

 (25) 
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Then, the FuzzPEn is defined similarly to (18) as the difference 
between averaged similarity degrees at state 𝑑𝐸 and 𝑑𝐸 + 1: 

 FuzzPEn(�⃗�, 𝑑𝐸) = −[ln𝜑
𝑑𝐸+1 − ln𝜑𝑑𝐸]. (26) 

In Fig. 14 there are presented the results of the FuzzPEn in the 
combination with the default exponential membership function.  

 

 

 (a) (b) 

 

 (c) (d) 

Fig. 14. The dynamics of the FuzzPEn calculated with the default 
exponential membership function along with the crashes of 1929 (a),  

1987 (b), 2008 (c), and 2020 (d) in the DJIA index 

From Fig. 14 we can see that the dynamics of this type of entropy 
is much more characteristic in comparison with the classic version. 
That is, its peak declines before the collapse are much lower and 
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larger. Although the behavior of classic entropy is practically 
indistinguishable, here fuzzification can act as an alternative to 
enhance the predictive effect of the indicator. 

In Fig. 15 there are presented the results of the FuzzPEn in the 
combination with the sigmoid membership function.  

 

 

 (a) (b) 

 

 (c) (d) 

Fig. 15. The dynamics of the FuzzPEn calculated with the sigmoid 
membership function along with the crashes of 1929 (a), 1987 (b),  

2008 (c), and 2020 (d) in the DJIA index 

Fig. 15 represents similar results as for the exponential 
membership function. We see that each crash in the DJIA index is 
accompanied by a drop in the FuzzPEn. The same is true for 
permutation entropy with the linear membership function, as we 
can see in Fig. 16.  
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 (a) (b) 

 

 (c) (d) 

Fig. 16. The dynamics of the FuzzPEn calculated  
with the linear membership function along with the crashes of 1929 (a),  

1987 (b), 2008 (c), and 2020 (d) in the DJIA index 

As we could see, despite different membership functions, the 
dynamics of the FuzzPEn remains approximately the same. We could 
conclude that all of the membership functions would be a reasonable 
choice for the crisis identification and prediction regarding the 
FuzzPEn.  

Recurrence plot and its fuzzified version 

A classic recurrence plot (RP) is the representation of those states 
which stay close to each other or far away. Suppose we have defined 

�⃗� to be the set of phase states, in which �⃗�(𝑖) is the i-th state of a 



N e u ro - F uz z y  M o d e l i n g  T e c hn i qu e s  i n  Eco n o mi cs  2021, VOL. 10 

30 

dynamical system in 𝑑𝐸-dimensional space. An RP is an 𝑁 × 𝑁 binary 
representation of similar or dissimilar states. On RP we put a black 

dot (one) if state �⃗�(𝑗) remains within the ball of radius 𝜀 with the 

center �⃗�(𝑖). This approach can be represented by the following 
equation:  

 𝑅(𝑖, 𝑗) = 𝐻(𝜀 − ‖�⃗�(𝑖) − �⃗�(𝑗)‖), (27) 

where 𝑅(𝑖, 𝑗) is an element of the recurrence matrix 𝑅, and 𝐻(∙) is the 
Heaviside function that produces 1 if the relation insider brackets is 
positive and 0 in the opposite case. 

For recurrence plots, we have set 𝑑𝐸 = 1 and 𝜏 = 1. Euclidian 
distance serves as the basis for calculating the distance between the 
phase-space trajectories. The threshold distance of the classic 
recurrence approach 𝜀 = 0.1. 

Different patterns are formed by recurrence points: homogenous, 
periodic, drift, or disrupted changes. Single isolated points will occur 
when changes are rare. Horizontal and vertical lines indicate that the 
system remains in stationary states for some time, i.e., it does not 
change for some time or changes are very slow. Diagonal lines will 
indicate that the system visits the same region of the phase space at 
distinct times. The length of such lines represents the duration of such 
states.  

For deterministic states, it would be more natural to have long 
diagonal lines and few isolated points, while for stochastic periods 
there would be more isolated points and short diagonal lines.  

Fig. 17 presents classic RPs for the studied crashes.  
As we can see from Fig. 17, the structure of recurrence plots for 

the studied crashes appears to be different and inhomogeneous for 
each crash. This approach, thanks to its visual representation, can 
already provide us with an understanding of how different 
circumstances influence the recurrent nature of each crisis, despite the 
visual similarity of each crash. Each RP gives an idea that the studied 
crashes are highly nonstationary and classical linear approaches may 
not be suitable for modeling the dynamics of the DJIA index. The 
approach based on recurrent diagrams, like the entropy methods, is 
sensitive to the selection of the embedding dimension 𝑑𝐸, the time 
delay 𝜏, and such a parameter as the recurrence threshold 𝜀. The last 
parameter can make the visual representation too sparse or too densely 
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populated with recurrence points. Fuzzy recurrence plots can 
represent a more stable and visually informative alternative to the 
classical approach [58, 62]. 

 
 

 

 (a) (b) 

 

 (c) (d) 

Fig. 17. Classic recurrence plots calculated for the standardized  
initial time fragments of the crashes of 1929 (a), 1987 (b), 2008 (c),  

and 2020 (d) in the DJIA index 

The concept of fuzzy recurrence plot instead of simple binary 
representation uses similarity degree which varies between 0 and 1. In 
perspective, such an approach can alleviate the problem with 
threshold selection and enhance more detailed visualization of the 
studied reconstructed states.  
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According to this approach, in addition to the set of phase states �⃗�, 

we define the set of fuzzy clusters �⃗⃗� of states, respectively. A fuzzy 

matrix �⃗� × �⃗⃗� includes the membership which defines the strength of 
belongingness of each pair (𝑥, 𝑣) in 𝑅. We obtain fuzzy clusters of the 
phase-space using the classic fuzzy c-means (FCM) algorithm. Using 
this approach, we are trying to minimize the following fuzzy objective 
function:  

 𝐽(𝛭, 𝐶) =∑∑(𝜇𝑖𝑗)
𝑚

𝑐

𝑗=1

[𝑑(�⃗�(𝑖), 𝐶(𝑗))]
2

𝑁

𝑖=1

, (28) 

where 𝑐 is the number of clusters, 1 < 𝑐 < 𝑁 (in our case, 𝑐 = 7);  
𝑚 ∈ [1, ∞) is the fuzzy weighting exponent that controls how fuzzified 

will be our cluster (𝑚 = 2 in this study); 𝛭 = {𝜇𝑖𝑗  | 𝑖 = 1,… , 𝑁; 
 𝑗 = 1,… , 𝑐} is the matrix of the fuzzy 𝑐-partition, which is calculated 

according to (30); 𝐶 = {𝐶(𝑗) |  𝑗 = 1,… , 𝑐} is the set of cluster centers; 

𝐶(𝑗) is the fuzzy center of cluster 𝑗 in 𝑑𝐸-dimensional space, which is 

calculated according to (29); 𝑑(�⃗�(𝑖), 𝐶(𝑗)) is the norm metric (Euclidian 

distance in our case) between the phase-space trajectory �⃗�(𝑖) and the 

fuzzy center 𝐶(𝑗). Phase-space trajectories are reconstructed with the 
same 𝑑𝐸 and 𝜏 as for the classic recurrence approach.  

Each of the studied points i has a set of coefficients 𝜇𝑖𝑗 that define 
their degree of belongingness to the j-th cluster. Each of the 

constructed clusters is characterized by a center 𝐶(𝑗), which can be 
computed as  

 𝐶(𝑗) =
∑ (𝜇𝑖𝑗)

𝑚𝑁
𝑖=1 �⃗�(𝑖)

∑ (𝜇𝑖𝑗)
𝑚𝑁

𝑖=1

, (29) 

and 𝜇𝑖𝑗 is computed as  

 𝜇𝑖𝑗 = 1 ∑[
𝑑(�⃗�(𝑖), 𝐶(𝑗))

𝑑(�⃗�(𝑖), 𝐶(𝑘))
]

2/(𝑚−1)𝑐

𝑘=1

⁄ , 1 ≤ 𝑗 ≤ 𝑐. (30) 
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We stop to update the membership values 𝜇𝑖𝑗 when  
‖𝛭𝑡 −𝛭𝑡+1‖ ≤ 𝜀 (in our case, 𝜀 = 0.0001).  

Fig. 18 presents the recurrence structure of the studied crashes in 
terms of the fuzzy recurrence plots.  

 

 

 (a) (b) 

 

 (c) (d) 

Fig. 18. Fuzzy recurrence plots calculated  
for the standardized returns of the crashes of 1929 (a), 1987 (b),  

2008 (c), and 2020 (d) in the DJIA index 

In general, FRPs present approximately the same information 
about each crash as the classic approach. We can see how the 
combination of horizontal, vertical, and diagonal structures changes 
across time. From the visual representation, we may conclude that the 
overall degree of recurrence becomes higher during critical states. 
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Compared to the classic method, there are very little amount of 
isolated points in this type of diagram. Relying on fuzzy clustering, 
we get more squared and densely populated recurrence points that, in 
some way, make fuzzy recurrence representation more informative 
compared to the classic one.  

Conclusions 

The existing literature devoted to the study of complex nonlinear 
systems with the usage of fuzzy modifications gives an understanding 
that the theory of fuzzy logic will get its further development over 
many years. Different areas of science show that the theory of fuzzy 
sets is especially efficient when dealing with uncertainty and 
vagueness. Moreover, in the future, the development of fuzzy set 
theory in combination with information theory, chaos theory, non-
extensive Tsallis statistics, irreversibility theory, theory of complex 
networks, etc. is no less interesting. 

In this study, for the first time, we have presented indicators 
(indicators-precursors) based on fuzzy entropy theory and fuzzy 
recurrence plots. Here, we have performed a comparative analysis of 
both classic methods and their fuzzy analogs. For the benchmark of 
our analysis, we have chosen the Dow Jones Industrial Index, as it is 
one of the most capitalized and commonly followed financial 
indicator in the world. Following the list of stock market crashes and 
bear markets [49], we have selected four the most known crashes of 
the stock market as a baseline of our analysis: the crises of 1929, 
1987, 2008, and 2020 years. The sub-series of crashes were obtained 
from the daily data of the DJIA index. The monitoring of the 
evolution of the market was performed with the sliding window 
approach.  

Since information theory is currently saturated with various 
entropy indicators, as a starting point for further research on the 
theory of fuzzy sets, we took the classical Shannon, approximate, and 
permutation entropies, and their fuzzy alternatives – fuzzy Shannon, 
approximate, and permutation entropy. Each of the fuzzy 
modifications was accompanied by three fuzzy membership functions: 
default exponential fuzzy function, sigmoid fuzzy function, and 
simple linear function. All of the empirical results show that the 
fuzzification of the original entropy approaches gives great 
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perspectives to the construction of the effective and robust indicators 
(indicators-precursors) of critical events in the studied complex 
systems. Experimenting with the different time window of different 
sizes, threshold parameters, embedding dimension, and time delays, 
we have approved that fuzzy entropies are stable to the length of the 
time series, embedding dimension, delay, and threshold parameters, 
compared to the classic approaches. We have found that the sigmoid 
membership function is the leading variant among the proposed. 
Although other fuzzy functions demonstrated perfect results, for 
example, for the FuzzApEn or the FuzzPEn, there still remains a 
problem with the FuzzShEn. Also, some of the presented crashes 
could not be identified as good as with the usage of the sigmoid 
approach. In our opinion, this type of function has to be leading 
during the construction of the trading strategies based on fuzzy 
entropies. 

Precisely the same conclusion could be done for fuzzy recurrence 
plots. In addition, this paper presents a comparative analysis of classical 
and fuzzy recurrent diagrams. In general, FRPs presented precisely the 
same amount of information about each crash as the classic approach. 
Compared to the classic method, the structure of that type of RP 
appeared to be more inhomogeneous. Relying on fuzzy clustering, we 
have gotten more squared and densely populated recurrence points that, 
in some way, made fuzzy recurrence representation more informative 
compared to the classic one. Further, it would be interesting to present 
indicators of crash events based on fuzzy cross-recurrence plots, fuzzy 
recurrence network, fuzzy recurrence quantification analysis, and fuzzy 
recurrence entropies, combining it all with the deep learning approaches 
[59, 60, 61, 63, 87].  

The proposed econophysics approaches demonstrate promising 
results not only for researchers but also for practitioners: ordinary 
investors, professional traders, and data analysts. The prospective of 
using fuzzy-based approaches is not limited only by the construction 
of indicators for trading, but also, they can be applied to banking 
regulation, portfolio management, and financial forecasting [75]. 
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