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The operation of drilling rigs in the modes of increased vibration 

of drill rods increases the number of main unit breakdowns, increases 

the wear of the rods, reduces the technical and economic parameters 

of drilling, worsens the working conditions of operating personnel. 

Therefore, the choice of rational modes of rotary drilling rigs opera-

tion, which allow reducing oscillations of drill rods, is an actual 

problem that meets the requirements of their operation. Many rea-

sons affecting the vibration resistance of the operation of rotary drill-

ing rigs, indicate the expediency in the study to apply modern meth-

ods, which include the method of mathematical modeling. The paper 

considers the developing of a mathematical model of the transverse 

oscillations of the drill rod, taking into account the principal of phys-

ics. The development of such a model made it possible not only to 

distinguish the natural frequencies of the transverse oscillations of 

the drill rod, but also to obtain an analytical formula that relates the 

values of these frequencies to the parameters characterizing the oper-

ation of the drill rod. It is important that this formula managed to be 

presented in a dimensionless form, combining the parameters into 

complexes, which reduced the number of variables in the formula 

from five to two, thereby facilitating the study.  
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The problem and its connection with practical tasks. 

Rotary drilling rigs are widely used when minerals are open-

mined. The functioning of rotary drilling rigs in modern conditions is 

associated with the implementation of forced modes, which leads to 

increased vibration of the drill rods, related, in particular, to their 

transverse oscillations. Forcing the drilling mode, associated with the 

need to increase the productivity of drilling machines, in turn, leads 

not only to an increase in the oscillation of the drill rods, but also to 

the expansion of its spectral composition. The operation of machines 

in the modes of increased vibration of the drill rods leads to an in-

crease in breakdowns of the main components, increased wear of the 

rods, a decrease in technical and economic indicators of drilling, de-

terioration of the working conditions of the staff. The choice of ra-

tional modes of rotary drilling rigs operation, which will reduce the 

oscillations of the drill rods, is an actual problem related to their op-

erating conditions.  

Therefore, by mathematical modeling of nonlinear dimensionless 

dependencies of frequencies and amplitudes of transverse natural 

oscillations of a drill rod, taking into account the physical laws asso-

ciated with this process, it will further allow to study the effect of 

parameters not separately from the amplitudes of forced transverse 

oscillations, but in combination and reduce adverse conditions of the 

machine as a whole, is an urgent task and meets the requirements of 

their operation. 

The simulation of oscillations of a drilling rod during the opera-

tion of a rotary drilling rig involves two stages. At the first stage, 

mathematical modelling of drilling rig oscillations is carried out, 

based on the corresponding equations of mathematical physics, the 

basis of which are the conservation laws. Naturally, mathematical 

modelling is an idealization of the studied processes. 

Therefore, to establish the adequacy of solutions obtained by 

mathematical modeling, it is necessary to introduce the second stage, 

namely, testing on real objects. At the same time, such tests on a 

drilling rod under real conditions are impossible, since they lead to 

violations of the technological regimes of drilling and, as a result, to 

significant economic costs. As one of the possible ways to overcome 

this problem is a computer modeling of a drilling rod with the help of 

which the necessary experiments can be carried out. 
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Analysis of research and publications. 

According to the author of the paper opinion [1], the main cause 

of vibration of rotary drilling rigs when blastholes drilling in open 

mining is the elastic oscillations of the drilling rod. Tensometric 

studies of stresses in the drilling rod have shown that the axial force 

at the bottom of the borehole is not constant; it changes periodically, 

with a constant component and a variable, the amplitude of which is 

approximately 40% of the constant component. Similar oscillatory 

phenomena are inherent in the torque on the drilling rod, where the 

variable component reaches 70-75% of the constant. The nature of 

the stress variation in the bar of the drilling rod is given in paper [1], 

which shows the oscillogram of mechanical stresses in the drilling 

rod bar at the speed n=50 min-1 and the axial force P=225 kN. In this 

case, the resulting stresses in the bar have the form: 

σ=σст+Δσsinω1  t - compression stress, τ=τст+Δτsinω2  t - torsional 

stresses (tangential). Experimental studies conducted at the Central 

mining combine «Uralasbest» (inclined drilling machine 2RDR-

200N) showed that the frequency of drilling increases with increas-

ing speed of rotation of the drilling tool. When changing the rota-

tional speed from 50 to 150 min-1, the oscillation frequency of the 

variable component of the axial force is in the range of 0,8-1,2 Hz, 

the frequency of the variable component of the torque varies from 

1,2 to 2 Hz. The nature of drilling rod fluctuations is even more 

complex. The use of natural vibrations of rod in rotary drilling rigs in 

open mining in order to increase their productivity requires the de-

velopment of the issue of their vibration isolation. The authors de-

clare that one of the ways to solve this issue is to replace the rigid 

connection of the drilling rod with the rotary drilling rig by an elastic 

connection with a relatively soft characteristic. However, the authors 

[1] do not provide any calculations or recommendations regarding 

the characteristics of the elastic connections of the drilling rod with 

the rotary drilling rig. While we [2], on the basis of calculations, 

have found that the cause of intense longitudinal oscillations of the 

rotator and drilling rod of rotary drilling rig is the resonant vibration 

of the rotator suspension on spring-damped cable pull rods of poly-

spast pulley block feedings to the bottomhole and the polyspast pul-

ley blocks of the drilling rod removal from the drilled borehole. 

Since the polyspast pulley blocks of feed and removal of bar are pre-
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tensioned, the rotator suspension from the drilling rod is constantly 

spring-loaded from both sides by the ropes of the polyspast pulley 

blocks and has different natural frequencies of oscillations depending 

on the number of bars in the drilling rods. So, for example, the sus-

pension of the rotator of the USBSH-250A machine with one 

weighed bar with a diameter of 219 mm and a length of 8000 mm 

has its own oscillation frequency f=8.8 Hz, with two screwed-on rods  

f=7.7 Hz, with three screwed rods -f=6.9 Hz. 

Saroyan A.E. carried out research at the drilling of deep boreholes 

2200-2500 m [3]. He notes that with the continuous contact of the 

drilling bit teeth with the borehole bottom in the string, elastic waves 

arise associated with both rolling of the drill bit roller cutter from a 

tooth onto a tooth, and with the rolling of the drill bit roller cutters 

like cones along a wavy of the face. However, how this waviness and 

the type of this waviness are recorded is not shown by the author. 

In [3], it was also shown that another source of longitudinal vibra-

tions is the rotation of the drill string. Heterogeneity of drilled rocks, 

changes in friction forces along the boreholes and other causes lead 

to uneven rotation of the drill string. 

In [4], for the first time for rotary drilling rigs, the authors give a 

mathematical model of the longitudinal and torsional vibrations of a 

drill rod, as well as the dependence of the low frequencies of their 

own longitudinal and torsional vibrations on the length of the drill 

rods for the SBSH-250N and SBSH-250 MNA drilling rigs. It is 

shown that with increasing of borehole depth by increasing the drill-

ing rod, natural frequencies of, both longitudinal, transverse and tor-

sional vibrations of the rods decrease according to a non-linear law, 

while approaching each other in magnitude. 

Simonov V.V., Yunin Ye.K. [5] and Saroyan A.Ye. [3] agree, on 

the basis of the tests carried out, the falling torque characteristic of 

the drill bit with increasing angular velocity of its rotation causes 

torsional and longitudinal vibrations during the drilling of deep (up 

to 3000 m) boreholes. 

Sukhanov A.F., Kutuzov B.N., Schmidt R.G. [7] note that with an 

increase in the bit rotation speed, the vibration parameters also grow, 

and when drilling fragile monolithic rocks less intensively than when 

drilling strong, fractured rocks. With an increase in the speed of rota-

tion of the drill rod over 120-150 min-1, in drill rods with the cable-
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polyspast supply system, resonant phenomena often occur, preclud-

ing the further possibility of operating without changing the operat-

ing parameters. However, in the paper there is no data on the value 

of the frequencies and amplitudes of these resonant oscillations. In 

the paper [7] it is also indicated that when the rotary drilling rigs op-

erate, the axial feed forces and the number of rotations of the rotator 

can reach such values at which the drilling rod loses stability. The 

authors have performed a theoretical definition of the vibration re-

sistance of drill rods, as a result of which it is shown (Fig. 17, p. 48 

[7]) that for rods of 10 m long with an outer diameter of  

Ø 152 mm and a wall thickness h = 12 mm with an axial force Р 

= 200 kN stability is lost when the number of rotations n=275 min-1, 

and for Р=500 kN - when n=80 min-1. Experimental data (Fig. 20, p. 

53 [7]), given by the authors on the bar Ø 152 mm, length 6 m (that 

is, more rigid than 10 m), obtained on the SBSH-200 drilling rig with 

a rigid cartridge feed scheme show that stability is lost when Р=180-

190 kN and the number of rotations n=150 min-1, does not confirm 

the theory set forth in the same source, since the rigid bar loses sta-

bility with less by 5-10% efforts and 54.5% less rotations than ac-

cording to theoretical calculations. In addition, it should be noted that 

currently the most common are the more powerful SBSH-250 MNA-

32 drilling rigs, which use 8-meter thick drill rods Ø215×51.5 and 

Ø203×50. At the same time, in iron-ore open pits, for example, in the 

Kryvyi Rih iron-ore basin, they drill to a depth of up to 24 m, that is, 

with no more than 3 rods at a speed of n≤110 min-1 and supply ef-

forts of Р≤220 kN. In the well-known publications there are no data 

on the stability of such drill rods under these drilling conditions. In a 

later paper [17] Kutuzov B.N. with co-authors gave data on the loss 

of stability of the drill rod of the SBSH-250MN drilling rig Р≥250 

kN and the number of rotation n≥120 min-1, taking into account the 

centrifugal force arising from the rotation of the axially bent drilling 

rod. Will a loss of stability of the drill rod occur, taking into account 

the centrifugal force arising from the rotation of the axially curved 

drill rod up to 24 m long under the conditions of the Kryvyi Rih iron 

ore basin, is unknown. To clarify these contradictions, it is necessary 

to carry out special studies on the stability of the drill rod in the 

range of real axial feed forces during drilling with rotary drilling rigs 

of the SBSH-250 type. 
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In paper [8], the design model is presented and the natural fre-

quencies of the transverse oscillations of the drill rod are defined be-

low -ω=61-59 1/s for various axial feed forces R in the range of 50-

350 kN for the SBSH-250N machine of the Novokramatorsk plant 

without specifying the rod parameters. This paper presents recommen-

dations for rotational frequencies of the drill rod, taking into account the 

forced resonant oscillations for the SBSH-250N drilling rigs with one 

rod equipped with a roller cutter with a number of teeth z=3. 

However, the SBSH-250N drilling rig was a prototype that was 

not put into production. Therefore, it is not possible to verify the rec-

ommendations of the authors. 

When describing the operating conditions of rotary drilling rigs, 

most of the authors, as the main source of vibration, define the fre-

quency of rotation of the drill rod, longitudinal, torsional and trans-

verse oscillations of the drilling rod pipe strings. However, there are 

no data on the amplitudes of these oscillations and the conditions for 

their transmission to the drilling rig, which makes it impossible to 

predict in advance the vibration of the bar and the whole rig and con-

sciously control the modes of its operation, reduce or completely 

eliminate the extreme oscillations, which, as mentioned above, lead 

to the destruction of the metal structure masts and significant vibra-

tion in the workplace of the operator of the drilling rig. 

Analysis of the processes that determine the transverse oscilla-

tions of the drill rods indicates both the number of them and the im-

possibility of taking them all into account. Therefore, we consider it 

expedient to carry out mathematical modeling of the transverse oscil-

lations of the drill rod, taking into account the physical laws associ-

ated with these processes 

Material presentation and findings.  

In modeling, the drill rod is considered as a hollow rod of circular 

cross section, both ends of which are floated [9]. In this case, the bar 

takes compression from the feed force. 

According to the scheme of the drill rod, shown in Figure 1, a 

mathematical model describing its transverse oscillations can be rep-

resented as a homogeneous partial differential equation [9] 
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Fig.1. Drill rod scheme 
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where у=у(х,t) transverse movement of the drill 

rod, m; Е - the modulus of rod material elasticity, 

N/m2; J - moment of inertia of the rod cross section, 

m4; т - intensity rod mass, kg/m; R - rod feeding 

force, N.  

De facto, at both ends of the rod, sliding fits, but 

with such a ratio of the length of the rod l and its 

diameter D(l>>D) the rod behaves like a hinged 

beam, therefore the boundary conditions are written 

as  
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Initial conditions can be written as 
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where φ(х), ψ(х) - functions that determine the initial profile and 

the transverse speed of the rod. 

The solution of the Cauchy problem (1),...,(4) will be made by the 

Fourier method [10] in the form of a product of functions depending 

on one variable,  
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Substituting (5) into the differential equation (1), we obtain 
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Next, we write equations (6) in the form of relations of functions 
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and divide both sides of the equation by the product of functions (5). 

After the reduction in the left side of the equality on T, and in the 

right side on X, we get 
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Since the left and right side of the equation (7) depend on various 

variables, for equality, they must be constant, i.e., 

 
2

24

=
+



X

dx

Xd

m

R

x

Xd

m

EJ 24

,   (8) 

2
2

=


−
T

tTd 2

,     (9) 

where -  - circular frequency, rad/s. 

The equations (8) and (9) of multiplication, respectively, by X and 

T are reduced to the form 
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Solution of equation (10) will be sought in the form 
xeX = 

.     (12) 

Substituting (12) into (10) we obtain the characteristic equation 
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Equation (13) is biquadratic and is solved by reducing the wall 

thickness, length, and load to a quadratic equation. 
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The solution of equation (14) is 
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According to the change of a variable, we find four roots of bi-

quadratic equations, two of which are complex-related, and two are 

real. 

,

,

)(

)(

i
R

EJm

EJ

R

i
R

EJm

EJ

R















++−=















++=

1
4

1
2

1
4

1
2

2

2
2

1

2

2
1

1







   (17) 

where ( 1−=i - imaginary unit) 
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We introduce notation to simplify further transformations, reduc-

ing the number of variables to two 
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 Then formulas (17) and (18) take the form  
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Taking into account (12), we obtain four linearly independent so-

lutions  
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Since the original equations contain only real variables, the solu-

tion must also be expressed in terms of real variables. Considering 

that a linear combination of solutions is also a solution of a linear 

differential equation, we get  
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As a result, the general solution of equation (10) is written as 
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The boundary conditions taking into account the representation of 

the function y(x, t) in the form (5) will take the form 
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First of all, let's calculate the derivatives of the total solution (23) 
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Substituting (26) and (27) into the boundary conditions (24), we 

obtain  
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Given that the determinant of a system of linear equations is not 

equal to zero 
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This system has the only zero solution, i.e.  
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Substituting (28) into the general solution (23), we obtain 
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 To find other constants, we use the boundary conditions (25) 
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The resulting homogeneous system of linear equations must have 

non-zero solutions, since otherwise differential equation (10) will 

have only zero solution. 

For the existence of a non-zero solution of the system of linear 

equations (30), it is necessary that its determinant is zero, i.e., 
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Expanding the determinant, we obtain the transcendental equation  
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or, after algebraic transformations, 
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In the future, for the convenience of calculations we introduce 
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Then, we consider the substitute (19), we find the discrete values 
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Cyclic frequency is according to the formula 
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Considering that the value (35) nullifies the determinant (31) of 

system (30), to find the constants we have one equation with two 

unknowns 
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At the same time, circular frequencies (38) are eigenfrequencies, 

and functions (41) are eigenfunctions that correspond to these fre-

quencies. The time dependence of the solution of the differential 

equation (1) is found by solving equation (11). To solve this equa-
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tion, we compose the characteristic equation 02
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tion of which has the form 
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( ) ,sincos tBtAtT nnnn  +=
 

,...),2,1( =n
 (44) 

is written in the form ( ) ( ) ( ),, tTxXtxy nnn = ,...),,( 21=n  or, tak-

ing into account (41) і (44), 

, ( ) ( )tdtc
l

x
ntxy nnnnn  sincossin +








=, ,  (45) 

where ,nn aCc 2= ,nn bCd 2=  Then the solution of the differen-

tial equation (1) can be represented as a superposition of solutions 

(45) 

( ) ( ) +







=



=1

sincossin
n

nnnn tdtc
l

x
ntxy , .  (46) 

To find the constants included in the solution (46), it is necessary 

to use the initial conditions (4). According to the first initial condi-

tion, we get 

( )  







=



=1

sin
n

n
l

x
ncx  .    (47) 

To find the constant cn, multiply both sides of equality (47) by  

sin(n(kx/l))and integrate over the interval [0, l], that gives 

( ) ==






 

=

1

0 1 22
sin k

n
knn c

l
c

l
dx

l

x
kx  ,   (48) 

where 
nk
nk

kn =




=
,
,

1
0

  - Kronecker symbol. Thus, according to 

(48) we can write 
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( ) dx
l

x
nx

l
cn 








=  sin

2 1

0

.    (49) 

To find the second constant, we first pre-differentiate the solution 

(46) with respect to time 

( )
( ).

,
 +−








=



 

=1n
nnnnnn tcosωdωtsinωcω

l

x
nπsin

t

txy
 (50) 

Then, according to the second initial condition, we get 

( ) 







=



= l

x
ndx

n
nn  sin

1

.   (51) 

After multiplying both sides of equation (51) by sin (n(kx/l)) 

and integrating on the interval [0, l], we obtain 

( ) .dx
l

x
nx

l
d

n

n  







=

1

0

sin
2




   (52) 

 The solution of the Cauchy problem (1), ... (4) taken into account 

(49) and (52) is written as 

( ) ( )

( ) ).sinsin

sin(cossin,

 







+

 +







 








=



=

1

0

1

01

1

2












d
l

nt

d
l

nt
l

x
n

l
txy

n

n

n
n

(53) 

To simplify research, we will bring formula (38) to a dimension-

less form. 

,~
2

2
2 1

n
nn


 −=  ,...),,( 21=n     (54) 

where ,~



 n

n = ,
m

EJ

l 2

2
 =

EJ

Rl


 =  

In formula (54), the unit of measurement of the circular frequency 

is  , which is determined by the properties of the studied drill rod, 

and the effect of the load on the rod is determined by the complex . 

Such a record of formula (54) allows one to study the effect of pa-

rameters not separately, but in a complex, reducing their number 

from five (R,E,J,m,l) to two ( ).,~   
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 Table 1 presents the results of calculations by the formula (54). 

Analysis of the results calculation shows that for the first harmonic 

(n=1), with increasing parameter , the circular frequency sharply 

decreases. 

 For further harmonics (n=2.3), there is no such a change - the 

magnitudes of the circular frequencies are larger, but they vary con-

siderably less depending on the parameter  Therefore, we can con-

clude that the first harmonic makes the main contribution to the vi-

bration of the drill rod. 
 

Table 1  

The dependence of the angular frequency of the load for different harmonics in a 

non-dimensional form 

 

 
 

 

n 

n 

1 2 3 

0,2 0,98 3,98 8,98 

0,4 0,92 3,92 8,92 

0,6 0,8 3,82 8,82 

0,8 0,6 3,67 8,67 

1 0 3,46 8,49 

Below are the results of numerical simulation. According to the 

initial data, the parameters of the drill rod are characterized by  

m.,dm;,d

;m,JPa;E;,mkN;R
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107291023206200
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4511
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Then, according to the formula (54), we find, rad/s 
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Formulas for circular and cyclic frequencies take the form 

,...).,(.,,

;,,~

211004211239482

100421110033

2

2
3

2

2

2

2
3

2

2
3

=−=

−==

−

−

n
n

l

l

n
f

n

l

l

n

n

nn

   


(55) 

Table 2 presents the results of calculations according to the for-

mula (55) of circular and cyclical natural frequencies of transverse 

oscillations of the drill rod of the first three harmonics for different 

lengths of the drill rod. 

Table 2. The calculation results for the three harmonics of the 

natural frequencies of oscillations for different lengths of the drill 

rod. 

ìl,
 

8 16 

n  1 2 3 1 2 3 

,n rad/s 
45,74 187,79 424,51 11,37 45,74 

104,9

3 

,nf
Hz 

7,28 29,89 67,56 1,81 7,28 16,70 

Checking the adequacy of the mathematical model was performed 

using the SolidWorks software package [11-15]. 

On the linear dimensions of two heavy drill rods, taking into ac-

count the requirements of the COSMOSWorks program [13], a com-

puter model of the drilling rod was built: material - steel 45; connec-

tion of two rods - threaded coupling; axial force Р = 220 kN; end 

fixing - the upper part in the form of a sliding fit of the spindle sleeve 

in the support node, the lower part - a dril bit in the form of a ball 

five. 

The specified operating (excitation) frequency range is from 0 to 

106.8 rad/s (0-17 Hz); according to the COSMOSWorks program, 

the modal damping factor was chosen, corresponding to the “metal 

structure with connections” - 0.03. The calculation of the amplitudes 

of oscillations in a given frequency range was carried out every 0.2 

Hz, and near the resonant frequencies - every 0.05-0.1 Hz. Further, 

using SolidWorks, and FFiplus applications are performed calcula-

tions presents table 3. 
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Table 3  

List of modes of rotation of the drill rod. 

Mode № Frequency (Rad/sec) Frequency (Hertz) Period (Seconds) 

1 – x-axis 11.842 1.8847 0.5306 

1 – y-axis 11.843 1.8849 0.53054 

2 – x-axis 47.296 7.5274 0.13285 

2 – y-axis 47.319 7.5311 0.13278 

3 – x-axis 106.17 16.897 0.059183 

3 – y-axis 106.29 16.916 0.059114 

 The visualization of the oscillation amplitudes of the drilling rod by 

the COSMOSWorks program is performed in a stylized way. The half-

cycles of vibration amplitudes are shown on one side of the axis of rota-

tion of the drilling rod. This indicates their symmetry. In the first mode, 

one half-period is the length of the drilling rod, in the second mode - one 

full period, in the third mode - 1.5 periods of oscillation. 

The theoretical calculations in the first mode differ from the com-

puter experiment in circular frequency by 0.75% and in amplitude by 

0.04%, which can be considered a good confirmation of the theoreti-

cal calculations. 

The obtained calculation results are in good agreement with both 

experimental data and modeling performed in the SolidWorks envi-

ronment. 

The findings, the task of further research.  

Mathematical modeling of the transverse oscillations of the drill 

rod, based on physical patterns, allowed us to establish the functional 

dependence of the natural frequencies of the transverse oscillations 

of the drill rod on the main parameters of the rod: mass intensity, 

elastic modulus, diameter, wall thickness, length and axial load. 

Bringing the formula that determines the frequency dependences 

of the bar parameters to a dimensionless view allowed grouping 

these parameters into complexes, reducing the number of variables 

from five to two, and thereby greatly simplifying the study of the 

resulting dependence. 

Analysis of the dependence of the drill rod transverse oscillation 

frequency on the load showed that the first harmonic plays a signifi-

cant role in the transverse oscillations. The frequencies of the follow-

ing harmonics are much higher, but depend little on the load. 
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The task of further research is to implement mathematical model-
ing of the amplitudes of the forced transverse oscillations of the drill 
rod and, due to scale invariance or scaling, will allow, based on the 
similarity theory and dimension analysis, to study the effect of pa-
rameters not separately from the amplitudes of the forced transverse 
oscillations but in the complex, which significantly reduce the total 
amount of research. 
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