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1 Introduction

Photonic crystals (PCs) consist of periodically located particles of materials (submaterials) with
different refractive indices. Periodic spatial modulations of the refractive index create regions
called photonic band gaps or stop zones. Therefore, the PCs reflect incident light at certain
frequencies and angles, depending on the spatial location of submaterials along one or more
principal axes of one-, two-, and three-dimensional (3-D) periodic structures.1 The width of
the photonic band gap is determined by the contrast between the refractive index of the sub-
materials, the parameters of structural symmetry and the lattice. PC’s color is a consequence
of their micro- and nanostructures that selectively reflect a certain range of wavelengths of
incident light. This mechanism is the basis of structural colors, which are abundant in nature:
in plants, insects, and mollusks.2

Influence on the PC or the chemical composition, the shape, the crystalline structure of the
forming elements, or regulation of the parameters of their stacking in the PCs allows to control
not only electronic properties but also photonic band gap. Thus, the look of the PC can be modi-
fied in a controlled manner.1 The electrically sensitive PCs represent one of the most promising
controlled metamaterials for technological applications. In fact, the electrical effects can be accu-
rately regulated and continuously controlled. In addition, their implementation is convenient and
usually characterized by a quick reaction response.3,4 For example, McPhail et al.5 created elec-
trically regulated 3-D PCs, which can adjust the wavelengths in the range of 70 nm. The supply
of a voltage perpendicularly to the layers of the PC led to reorganization of its components and,
thus, to change in the index of refraction of the entire structure. It is a mechanism of the influence
on the photonic band gap directly.

Zhang et al.6 announce the creation of the ordered array of TiO2 nanotubes (Fig. 1) in anatase
modification and a mixture of rutile and anatase phases. They describe the origin of nanotubes’
structural anisotropy and measure anisotropic dielectric permittivity of the experimental
samples.
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This paper shows how electronic and dielectric properties of such PCs depend on the shape of
structural elements, their polymorphic modifications, and the parameters of their stacking in the
body’s space of metastructure.

Traditionally, the analysis of optical, dielectric, and photonic properties is done by the theo-
retical and calculation methods, for example, Refs. 7–9. Hybertsen and Louie10 propose to deter-
mine the dielectric properties by the density functional theory methods. Therefore, this result is
performed using the software package.11 The used software is the unique author’s code, which
has several advantages. First, the authors take responsibility for any errors of algorithmic or
mathematical nature in their own product. Second, the software has been successfully tested
in many of the author’s scientific papers.12–16 Third, the process of scientific physical analysis
of the calculation result is more flexible if you have your own open source. It makes possible the
analyzing of the results of any intermediate stage and viewing any data—not only programmed
by the third party developer. In addition, the independent improvement of software according to
specific needs of the research is also convenient. Due to the fact that the software package is not
yet registered, Ref. 11 contains a tool for control calculation of the total energy of the silicon
crystal, the spatial distribution of density, and density of states of the valence electrons.

2 Methods

The basic states of the electron–nucleus systems were detected by means of the self-consistent
solution of the Kohn–Sham equations. Electronic variables were determined only with the
atomic cores fixed. Following Kohn–Sham,17,18 electronic density was written down in terms
of occupied orthonormal one-particle wave functions:

EQ-TARGET;temp:intralink-;e001;116;294nðrÞ ¼
X
i

jψ iðrÞj2: (1)

The point on the potential energy surface in the Born–Oppenheimer approximation was
determined as a minimum energy functional with regard to the wave functions:
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where fRjg are coordinates of atomic cores and fανg are any external influences on the system.
In the generally accepted formulation, minimization of the energy functional [Eq. (2)] with

respect to one-particle orbitals with additional orthonormal constraint on the one-particle orbitals

ψ iðr⇀Þ results in Kohn–Sham one-particle equations:18
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In the solution of these equations, the pseudopotential formalism was used, according to
which a solid is considered as a set of valence electrons and the ion cores. In the pseudopotential

Fig. 1 The images of an experimental sample of TiO2 nanotubes array taken with an electron
microscope.6
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approximation, the operator of the pseudopotential VPS, which describes the interaction of
valence electrons with the core, is small, and the corresponding pseudo-wavefunction is smooth.
Pseudopotential is required to correctly represent the long-range interactions of the core and to
produce pseudo-wavefunction solutions that approach the full wavefunction outside a core
radius rc. In addition, it is desired for a pseudopotential to be transferable, which means
that one and the same pseudopotential can be used in calculations of different chemical envi-
ronment resulting in calculations with comparable accuracy. For example, Bachelet et al.19 pro-
posed an analytic fit to the pseudopotentials. This ab initio pseudopotential is used by us.

The full crystalline potential is constructed as the sum of ion pseudopotentials that are not
overlapping and associated with ions (nucleus + core electrons), located at the RS positions that
are periodically repeated for crystals:

EQ-TARGET;temp:intralink-;e004;116;604VcrystðrÞ → VPSðrÞ ¼
X
p

X
S

V
⏜
PS
S ðr − p − RSÞ: (4)

For nonperiodic systems, such as a thin film or a cluster, the problem of lack of periodicity is
circumvented by using of the supercell method.20,21 Namely, the cluster is periodically repeated
but the distance between each cluster and its periodic images is so large that their interaction is
negligible. The ubiquitous periodicity of the crystal (or artificial) lattice produces a periodic
potential and thus imposes the same periodicity on the density (implying Bloch’s theorem).
The Kohn–Sham potential of a periodic system exhibits the same periodicity as the direct lattice
and the Kohn–Sham orbitals can be written in Bloch form:

EQ-TARGET;temp:intralink-;e005;116;475ψðrÞ ¼ ψ iðr; kÞ ¼ expðik · rÞuiðr; kÞ; (5)

where k is a vector in the first Brillouin zone. The functions uiðr; kÞ have the periodicity of the
direct lattice. The index i runs over all states. The periodic functions uiðr; kÞ are expanded in the
plane wave basis. This heavily suggests using plane waves as the generic basis set in order to
expand the periodic part of the orbitals. Since plane waves form a complete and orthonormal set
of functions, they can be used to expand orbitals according to
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where G is the vector in the reciprocal space, Ω is the volume of the elementary cells, which
consists of a periodic crystal or an artificial superlattice when reproducing nonperiodic objects.

Equation (3) after the Fourier transform to the reciprocal space has the form:
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where VKS is the Kohn–Sham potential:

EQ-TARGET;temp:intralink-;e008;116;241VKSðkþG; kþG 0Þ ¼ VpsðkþG; kþG 0Þ þ VHðG 0 −GÞ þ VXCðG 0 −GÞ; (8)

where Vxc is the exchange and correlation potential. To calculate it, we used Ceperley–Alder’s
approximation that has been parameterized by Perdew and Zunger.

In the general case, the expressions describing the potentials of interactions are complex. The
use of the atomic bases containing the inversion operation in the point symmetry group leads to
the fact that the Fourier components in the expansion of all expressions are real.

The main value in the formalism of the functional of the electron density is the charge density.
It is estimated from a self-consistent solution of Eq. (7), which should be performed at all points
of the nonreduced section of the Brillouin zone:
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where the index j runs over all occupied states, k is a vector in the first Brillouin zone, NT is the
number of the operators α in the point group T of the atomic basis, and the factor 2 takes into
account the spin degeneracy.

Estimated effort can be reduced if there is the integral over the Brillouin zone to approximate
by summing over special points of the Brillouin zone. It is possible to replace (with satisfactory
precision) the summation by the finite number of special points to one point in the Brillouin
zone. It is possible to restrict only the Г-point in the Brillouin zone, especially as it relates
to the artificial periodic systems.

Distribution of electrons along the energy zones for Γ-state of the investigated structures was
found by means of numerical calculation of derivative limΔE→0ΔN∕ΔE (where ΔN is a number
of the allowed states for the ΔE interval of energy). The one-particle energy spectrum was
obtained from the calculation of the eigenvalues of the Kohn–Sham matrix. In accordance with
ideology of the electronic density functional, the occupied states at absolute zero temperature
were defined. It allowed to define position of the last occupied state, their number being half the
number of electrons (due to ignoring the spin of the electron), and position of the first free states.

The solid-state linear response to perturbation is described by a dielectric matrix. In our
computational experiments, the static dielectric matrix was estimated from the electronic struc-
ture of the ground state of the crystalline system (occupied and unoccupied states). The dielectric
matrix ϵ−1GG 0 ðq;ωÞ was calculated in reciprocal space and depended on the wave vector q and the
oscillation frequency of electromagnetic field ω (G, reciprocal lattice vectors). Nondiagonal ele-
ments of the matrix ϵ−1GG 0 determine the local effects of the field. The macroscopic dielectric
function was as follows:10

EQ-TARGET;temp:intralink-;e010;116;468ϵMðqþGÞ ¼ 1

ε−100 ðqÞ
: (10)

To get the elements of the matrix, the equation in the reciprocal space was solved:

EQ-TARGET;temp:intralink-;e011;116;411ϵ−1GG 0 ðqÞ ¼ δGG 0 þ 4πe2

jqþGj2 χGG 0 ðqÞ; (11)

where polarization was defined as follows:
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where the indices c; v; k are taken over by the states of conduction, valence, and Brillouin zones,
respectively.10

The resulting dielectric matrix is Hermitian and, due to the presence of the center of inversion
of the model crystal, is symmetric. Its diagonalization leads to the obtaining of eigenvalues
ϵ−1n ðqÞ and eigenfunctions V−1

n ðqþGÞ:

EQ-TARGET;temp:intralink-;e015;116;143

X
G 0

ϵ−1ðqþG; qþG 0ÞV−1
n ðqþG 0Þ ¼ εnðqÞV−1

n ðqþGÞ: (15)

They serve to visualize screening in real space, transmit information about the solid-state
electronic response and allow taking into account the symmetry of the crystal adequately.
Eigenvalues mean the dielectric band structure. As in Refs. 22 and 23, we interpret the obtained
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eigenvalues of the dielectric matrix as the absorption spectrum. The positions of the optical
transitions are determined from the ground-state band structure (Kohn–Sham eigenvalues) by
applying the optical selection rules.

3 Result and Discussion

To continue the investigation of arrayed TiO2 nanoparticles photonic properties, we theoretically
analyzed the changes in the electrochemical, dielectric, dispersive properties of the opal-type
PCs depending on the shape of TiO2 structural elements, and parameters of their stacking inside
the crystal body. Computer numerical models for quantitative evaluation of the characteristics of
the PCs made of TiO2 rutile nanoparticles of various shapes (nanospheres, nanotubes, nanocy-
linders, ellipsoids), stacked into the spatial structure of tetragonal symmetry, have been devel-
oped. The nanosphere [Fig. 2(a)] was a cluster of 33 atoms (11 — Ti, 22 — O), the nanotube
[Fig. 2(b)] contained 48 atoms (16 — Ti, 32 — O), the nanocylinder [Fig. 2(c)] contained 57
atoms (19 — Ti, 38 — O), and the nanoelipsoid [Fig. 2(d)] contained 16 atoms (6 — Ti, 10 —
O). The diameter of the nanospheres, nanotubes, and nanocylinders was 7.4 Å. The short diam-
eter of the ellipsoid was 4.6 Å, the long diameter of the ellipsoid was 5.9 Å, and the height of the
nanotube and the cylinder was 8.9 Å.

The arranging of the tetragonally symmetric PC forming elements occurred with a constant c
parameter, equal to 9.52 Å and variables a and b parameters of the crystal spatial lattice, ranged
between 4.76 and 11.64 Å. Such a variation of spatial ordering of the forming elements influ-
enced the electronic and dielectric properties of the obtained PC. Therefore, depending on the
period of forming elements’ arranging in the plane of the vectors a and b, the electronic and
dielectric properties of the PCs were determined and by means of a comparative analysis, the
anisotropy of their properties was determined.

The forming elements of the modeled cubically symmetric PC consisted of rutile and anatase
TiO2 nanoparticles. The nanoparticles were the clusters of 18 atoms (6— Ti, 10—O). The rutile
nanoparticle size was 6.4 × 4.6 × 5.9 Å [Fig. 3(a)], and the anatase one was 3.8 × 3.2 × 5.7 Å

Fig. 2 Atomic models of the tetragonally symmetic rutile TiO2 modification PCs: an array of
(a) nanospheres, (b) nanotubes, (c) nanocylinders, and (d) nanoelipsoids (dark spheres represent
Ti atoms and white ones represent O).
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[Fig. 3(b)]. The arranging period varied across all three vectors with a step of 0.53 Å from 6.35
to 10.05 Å.

Figure 4 shows the graphs of band gap width change of the tetragonally symmetric 3-D PCs,
depending on the period of forming elements’ arranging along the directions a and b. Regardless
of the shape of the crystals’ structural elements, peaks occur in periods of 8 to 10 Å. Therefore,
we can assume that the properties of the PC made up of nanoparticles up to 10 Å do not depend
on the shape of the nanoparticle, but only from the period of their repetition in the metastruc-
ture’s body.

Figure 5 shows the graphs of the atomic systems’ total energy dependence on the period of
forming elements’ arranging in the tetragonally symmetric PC. The PC, composed of ellipsoidal
nanoclusters, shows the smallest values of the atomic system’s total energy in the entire range of
arranging periods, which indicates a high probability of metastructure, composed of such nano-
particles, compared with other simulated ones. Therefore, for the comparative analysis of the
optical properties’ anisotropy detection, macroscopic relative permittivity for ellipsoidal TiO2

clusters PC, with the periods of forming elements’ arranging along directions a and b equal to
7.9, 9.0, and 10.6 Å, was calculated.

In Table 1, the calculated macroscopic relative permittivities of 3-D PCs in the direction of

the electric vector of the external field (E-vector) EjjZ, E ⊥ Z, and ðEẐÞ ≈ 53 deg are given. It
can be seen that the anisotropy of macroscopic permittivity is revealed only in the calculation of
PC with the period of forming elements’ arranging equal to 7.9 Å.

The tetragonally symmetric PC, composed of nanoellipsoids with a period of 7.9 Å, has a
band gap of 2.65 eV∕atom, which is close to the band gap value of the TiO2 rutile crystal.
Figure 6 shows the band gap width of the cubically symmetric PC, composed of TiO2 rutile
and anatase nanoparticles depending on the period of forming elements’ arranging. For the cal-
culation of dielectric matrices, the periods of forming elements’ arranging were 7.4 and 7.9 Å.

Fig. 4 The width of the band gap as a function of the period (a ¼ b) of the spatial tetragonal struc-
ture of the PC composed of TiO2 rutile nanoparticles (calculated at the Γ-point of the Brillouin
zone).

Fig. 3 Atomic models of the cubically symmetric rutile and anatase TiO2 PCs: (a) an array of rutile
nanoparticles and (b) an array of anatase nanoparticles (dark balls represent Ti atoms, white ones
represent O).

Balabai et al.: Electronic, dielectric, and optical properties of photonic crystals composed. . .

Journal of Nanophotonics 036003-6 Jul–Sep 2018 • Vol. 12(3)



In Fig. 7, electronic band structures of the cubically symmetric PCs, composed of arranged
rutile and anatase nanoclusters with periods of 7.4 and 7.9 Å, are presented. They clearly illus-
trate that the band structure varies considerably according to the change of period. Considerable
changes occurred in the band gap of PC, composed of rutile nanoparticles with the period of
forming elements’ arranging 7.4 Å. It is atypically narrow for the TiO2 of rutile modification, but
with increasing the period to 7.9 Å PC turns into a direct- and wide-gap crystal. This indicates the
existence of quantum transitions between the forming elements’ crystal, when they are arranged
with certain distances.

Table 1 Macroscopic relative permittivity of the tetragonally symmetric PCs composed of
ellipsoidal TiO2 rutile nanoparticles.

E-vector direction

Period (Å)

7,9 9,0 10,6

EjjZ 0,96 0,99 0,99

E ⊥ Z 1,00 0,99 0,99

ðEẐÞ ≈ 53 deg 1,00 0,99 —

Fig. 6 The band gap width as a function of the period of forming elements’ arranging of the cubi-
cally symmetric PCs composed of TiO2 rutile and anatase nanoparticles (calculated at the Γ-point
of the Brillouin zone).

Fig. 5 Total energy as a function of the period (a ¼ b) of forming elements’ arranging of TiO2 rutile
nanoparticles PC with spatial tetragonal structure.
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Table 2 shows the macroscopic permittivity of the cubically symmetric PCs, composed of the
TiO2 nanotubes of the rutile and anatase modifications, respectively. It can be seen that the
dielectric properties of the PCs, composed of rutile nanoparticles, are anisotropic at the period
of forming elements’ arranging equaling 7.4 Å. After increasing the period to 7.9 Å, the
anisotropy of the macroscopic relative permittivity disappears. The dielectric properties of ana-
tase nanoparticles PCs occur isotropic at these periods.

Fig. 7 The band structures of the cubically symmetric PCs, composed of (a,b) TiO2 rutile and
(c, d) anatase nanoparticles with the periods (a, c) 7.4 Å and (b, d) 7.9 Å.

Table 2 Macroscopic relative permittivity of cubically symmetric PCs composed of TiO2 nano-
particles of rutile or anatase modifications.

E-vector direction

Rutile Anatase

Period (Å) Period (Å)

7, 4 7, 9 7, 4 7, 9

EjjZ 1,13 1,00 0,99 0,99

E ⊥ Z 0,99 1,00 0,99 1,00
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The optical absorption spectrum is obtained as a solution of Eq. (15) for q → 0. Here, the
vector q denotes the transverse polarization of the electric field E. Thus, Fig. 8 shows the dielec-
tric matrices’ eigenvalues of the cubically symmetric PCs of the rutile and anatase modifications
with the periods of forming elements’ arranging 7.4 and 7.9 Å in the direction of E-vector EjjZ
and E ⊥ Z. In PC, composed by arranged rutile nanoparticles with the period of 7.4 Å, the
absorption wavelength varies considerably according to the direction of E-vector. When
EjjZ, a peak in the absorption spectrum is observed at 167 nm, and when E ⊥ Z, at
439 nm. As when comparing of macroscopic relative permittivities, PC’s properties occur iso-
tropical with the period of forming elements’ arranging 7.9 Å; the peak in the absorption spec-
trum is in the visible region of ∼600 nm.

The anatase nanoparticles PC do not fundamentally change the absorption wavelength with
changing the direction of E-vector, and it remains constant when changing the period of forming
elements’ arranging from 7.4 to 7.9 Å. For any of the calculated models, the wavelength is
∼270 nm; thus, PC’s properties are isotropic.

4 Conclusion

It was discovered that the electronic and dielectric properties of tetragonally symmetric PCs do
not depend on the shape of the nanoparticle, but only from the period of their repetition in the
metastructure’s body, and in some models, from the direction of E-vector. The anisotropy of
dielectric properties was observed in the cubically symmetric PC, composed of rutile nanopar-
ticles with the period of forming elements’ arranging equaling 7.4 Å. If the nanoparticles period
increased to 7.9 Å and then the anisotropy disappeared. The dielectric properties of anatase
nanoparticles PCs were isotropic.
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Fig. 8 The dielectric matrices’ eigenvalues (absorption spectrums) of the cubically symmetric PCs
composed of (a) rutile and (b) anatase TiO2 nanoparticles with the periods of forming elements’
arranging (left) 7.4 Å and (right) 7.9 Å.
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