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Abstract. Ultrasonic cleaning is one of the most efficient types of
cleaning mining equipment. In order to enhance its energy efficiency, it is
required to improve control over ultrasonic cleaning through considering
its spacious distribution. This control is based on assessing the condition
of a cleaned object in set points to determine duration of the process
according to the real contamination of a product. In order to form
controlling impact, the authors suggest a new fuzzy controller, which
combines features of a 3D fuzzy controller and an interval fuzzy
controller of Type 2. This enables taking advantages of both extensions of
fuzzy logic — an opportunity to process spacious data through fuzzy expert
evaluation. The concept of a controller is based on the 3-D interval fuzzy
set of Type 2. The developed controller differs from the traditional one by
reduced dimension and reduction of IT2 FS to IT1 FS. The rule base
remains two-dimensional and is not dependent on the number of sensors.
The elaborated methods enable the controller model based on 3-D IT2 FS
for ultrasonic cleaning of mining equipment. Spacious distribution of the
process and ambiguity of expert assessments are considered to determine
the process course according to the data of ultrasonic sensors.

1 Introduction

Efficient cleaning is essential for improving durability of mining equipment and enables its
current repairs. Various methods of equipment cleaning are applied to mining. Chemical
cleaning requires employment of hazardous chemical solvents, while mechanical cleaning
is noted for low efficiency in spite of great efforts applied. Unlike them, ultrasonic cleaning
is one of the most efficient and promising types of cleaning as it enables satisfactory results
without using harmful chemical solvents and hard physical labour. Yet, automation of
ultrasonic cleaning remains quite primitive nowadays and most ultrasonic baths are able to
control only time indices. For this reason, developing automation methods to control
ultrasonic cleaning in a more efficient way is an urgent, yet complicated task. The complex
character of this problem is conditioned by a great number of factors affecting ultrasonic
cleaning including a contamination type, temperature of washing solution, its composition,
ultrasound capacity and frequency, size and form of a tank, position of an ultrasonic
transducer, etc.
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Many researches have been aimed at improving efficiency of the basic component of
ultrasonic cleaning and cavitation collapses depending on a variety of factors. Thus, [1]
considers impact of oxygen concentration on the number of cavitation bubbles, while [2]
investigates into dependency of cavitation on liquid temperature and degasing, and in [3] a
new method of measuring cavitation activity enables monitoring its zoning. [4] also deploys
a new approach to measuring cavitation depending on various factors, in particular,
dependency of liquid temperature and gas contamination, frequency, intensity and time of
insonation.

Thus, ultrasonic cleaning is difficult to predict as too many interrelated factors affect it.
Besides, the process is characterized by spacious distribution caused by some physical
characteristics of cavitation. Spacious distribution is also conditioned by the cleaned object
itself that can have an arbitrary form and irregular contamination. Available systems of
ultrasonic cleaning automation ignore this factor considering only the liquid condition to
determine the process duration [5— 6]. In this case, there are power excess demands as
ultrasonic cleaning occurs in cleaned sections as well. In order to improve energy-
efficiency of ultrasonic cleaning, one should control the process through assessing the
condition of a cleaned body. This can be done through analyzing ultrasonic reflections
recorded by sensors in set points. Ultrasonic cleaning modelling can be complicated by
absence of a mathematical equation describing cavitation processes and cleaning
considering geometry of a cleaned body.

For this reason, modelling of ultrasonic cleaning is reduced to determining ultrasonic
pressure in each spacious point at a certain time unit and assessing zones with abrupt
pressure differences causing cavitation collapses [7 — 9]. This approach enables forecasting
only possible available cavitation collapses and is unable to assess the course of the
cleaning process as it ignores the influence of ultrasonic radiation on the product under
cleaning.

Modelling by means of the k-wave software [10—12] has detected inability to
determine factors affecting changes in sensor signals at the given moment — separation of a
contaminated layer or a body’s geometry. There are no clearly defined changes of a signal
for bodies of various forms. Thus, in assessing the ultrasonic cleaning process, we consider
the following assumptions:

1. There are no data on the form of a cleaned body and the rate of its contamination. This
will not require initial expert evaluation.

2. The process can be aimed at cleaning only, i.e. any changes in a signal indicate
separation of dirt. Therefore, it is reasonable to stop ultrasonic cleaning if there are no
considerable changes on all the sensors during the set period.

3. The sensor closest to the separated dirt records the greatest change of the signal.

These assumptions determine the basis for assessing the course of ultrasonic cleaning
through analyzing ultrasonic responses in the cleaning tank.

2 Configuration of the 3-D IT2 FS controller

Many physical processes including ultrasonic cleaning are referred to the systems with
distributed parameters. In practice, the distributed character of these systems is ignored
[13], as traditional control methods are applied to systems with concentrated parameters.
Yet, modern industry requires higher standards of energy-efficiency and safety [14 — 16].
Traditional control methods for systems with concentrated parameters cannot meet these
requirements. In recent decades, traditional control methods for systems with concentrated
parameters [17 — 19] have been expanded. Yet, they require complicated mathematical
models based on differential equations in partial derivatives, integral equations, integral-
differential equations or sets of various equations. More up-to-date methods [20 — 23] based
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on system training and applied expert experience are used to avoid the problem of too
complicated and bulky mathematical models. Thus, in [24], control is based on non-
invasive assessment of contamination of tubes by means of convolutional neural networks.
Yet, considering a great variety of mining machines, training algorithms for cleaning
require a great amount of calculation and time. 3-D fuzzy control is deprived of this
drawback and envisages formation of control considering system distribution [25 — 26].
This is achieved by applying a 3-D fuzzy controller, which due to a fuzzy set with an
additional spacious coordinate is able to process spacious data. Application of this
controller solves the problem of spacious distribution of the ultrasonic cleaning system, yet
we cannot obtain a clear conclusion on the contamination rate of mining machines.
Duration of the process is determined by assessing changes of ultrasonic responses in the
cleaning tank. Expert evaluation of this parameter is noted for its wide range of values. This
problem is solved by applying the interval membership function that enables expert
evaluation in the form of a range.

Thus, the 3-D fuzzy interval controller combines a 3-D fuzzy controller [25] and an
interval fuzzy controller of Type 2 [27 —29]. This enables combining the following
advantages of both expansions of fuzzy logic — processing spacious data and considering
spacious distribution of the system as well as ambiguity of expert evaluation of the
membership function. The controller is based on a 3-D interval fuzzy set of Type 2.

The 3-D interval fuzzy set of Type 2 (3-D IT2 FS) is determined as an expansion of the
3-D fuzzy set, the membership function of which is interval.

n(x.2) nex.z)

Fig. 1. Fuzzy sets a — a 3-D fuzzy set; b — a 3-D interval fuzzy set of Type 2.

In other words, we determine the 3-D interval fuzzy set of Type 2 4 through the
content variable X, the unidimensional space variable Z and the fuzzy membership function

u(x,z) (Fig. 1).
1:1=~{()c,z),lu;1 (x,z)|‘v’xe X,ze Z},
n (x.2)=[Lues cU=[01], - M

where J; is a primary membership, U is the domain of primary memberships, U = [0, 1] [30].
In order to simplify description of operations, we assume that a membership is
determined by two functions:

Jy=lp (o 2) g (x2)], )
where 1y (x,z) is a lower membership function determining the lower boundary of the

membership function, ;;1 (x,Z) is a upper membership function determining the upper

boundary of the membership function.
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Similarly to the 3-D fuzzy set and the fuzzy set of Type 2 [25, 27], we determine basic
operations for 3-D IT2 FS as operations for IT2 FS considering the available spacious
coordinate.

In [25], the 3-D fuzzy set is created to process spacious data. On its basis, a fuzzy
controller has been developed to control processes with distributed parameters. Yet, this
controller applies a crisp membership function that greatly limits the system and requires
accurate expert evaluation, which is impossible for ultrasonic cleaning. That is why, to
form adaptive automatic control, a controller based on the 3-D IT2 FS controller that
enables combining advantages of the 3-D controller and the one based on IT1 FS is
developed.

The developed 3-D IT2 FS controller possesses the same structure as the basic one [32],
yet, standard operations of fuzzification, the fuzzy logic output and defuzzification in a
more detailed description differ greatly (Fig. 2). Let us consider each stage in detail.

Fuzzification
Axl

x,(z)
—

Crisp
input 3

Rule base

Mechanism of output formation

Combination of spacious Dimension Mechanism
data reduction of output

(XlhZ) oo o e e e e e

Crisp output y(z) <_( Defuzzification

Fig. 2. The 3-D IT2 FS 3-D IT2 FS-based controller.

Fuzzification is the first stage of data processing. Similarly to the traditional fuzzy logic,
fuzzification can be performed in various ways and depends on the task to be solved.

To make it simpler and more concise, all the operations of the controller are presented
for solo-set fuzzification. The membership function for solo-set fuzzification looks in the
following way

~(x X, x=x,z=z
“ (x’z)={[ﬁ/‘( ) a4 ()] ' 3)

O,x#x,z#7
In this case, fuzzification for each crisp input X is determined in the following way [25]:

;uxl (xl(z)’z) —

- - 1
A= 2 Gy ey et (9 I [ (@) s ()
10
A =Y 5 M7 where i, (xy,z)= | [ILF (xN (z),z),;; (xN (z),z)}l
w zeZ XIN(Z)EXN (XN(Z)jz) W uEJXN —4 u

where u is the secondary variable which is an interval for the membership function with set
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xand z.
Thus, general fuzzification for N crisp inputs looks like:

i (x(2)2) .k (v (2).2)
v (2), ) ’

4= ¥ . % (5)

zeZx(z)eX| xy(EX N ( () s X

where the t-norm operation is marked by *.
After fuzzification of crisp inputs, we proceed to forming the fuzzy logic output based
on the set rule base. By using 3-D IT2 FS, we write the /-th rule into the base as [25]:

RU:Ifx(z) is C and ... and x, (z) is C),(2) is K/, (6)

where R’ —1is the rule (/ =1, 2...N); x; (Z) (j = 1,2,..., J) are input variables in set points of

space, C’l-lf 3-D IT2 FS, u is a controlling impact, K’ is IT2 FS, N is the number of fuzzy

rules.

The fuzzy logic output implies reduction of 3-D IT2 FS to the traditional IT2 FS. The
following operations are applied — combination of spacious data, reduction of dimension
and formation of an output. Output formation includes operations of combination,
intersection and addition described above. Rule (10) can be described as a fuzzy ratio [25]:

RAlx. x4 K i=1,2,.N. (7)
Combination of spacious data is the first operation in the fuzzy output that will lead to

transformation of the 3-D fuzzy interval input ;1 x into the 3-D set /¥, which is an interval

fuzzy set of Type 2 in each point x.. The set W' is determined as an expanded sup-star [25]
composition of input sets. Fig. 3 presents the composition for two crisp inputs for the space
Z: x(z) = [x1(2), x2(z)]. The expanded sup-star composition performed on the input set and
the assigned sets of the /-th rule is denoted by:

W;xo(f‘{x,.,é{) =A% (élz X...él-i), i

with the upper value of the membership function:

ZW' = ;Aﬂ[dxé: (x.,2)= SUP, (2)e Xy, (2) X, |:p;4‘ (xz’Z) *;dxéll (xz ’Z):| =

ZXI (x, (z),z)*...*/_txl (xj(z),z)*ﬁd (x,(2),2)*...
e (5,002 ©

{Supxl(z)e)(l [;Xl (xl (Z),Z)*,l_la (xl (Z)az)]}*
*{supx](z)eX/ |:px/ (xj(z),z)*péll (xj (Z)az)j|}a

where ze Z, the product * denotes the #-norm operation. The lower value of the
membership function is determined in a similar way.

supxl (2)EX),nx; (2)€X
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Fig. 3. Combining spacious data for each crisp input x(z) = [x1(z), x2(2)].

Next, the operation of dimension reduction is performed. The set W' is spacious
distribution for each input x. where the coordinate z is determined on the designing stage.
The operation of dimension reduction implies compression of space-distributed data to
obtain the two-dimensional one (x:, x).

After combining, we obtain a two-dimensional membership function for each input x; in
the plane (u, z). The centroid operation is one of the ways to compress the 3-D set W to the
2-D set that allows describing general impact of the space-distributed system on the input
x:. The upper and lower membership functions are determined in the following way [33]:

= l(f‘W’ +ﬂW’ 'H))As. i I(EWI +/UW/ Hl))AS»
i, = = 2 iy = = = . (0
ZASi > As;

i=1 i=1

where p is the number of input values of sensors with lower (z;) and upper ZW/ (z;)

values of the membership function; As; \/ (/4 Zit) — Hyy (z ))2 +(z,,, —z; ) is the length
of the i-th section of the straight line; (,uW, (z41)- My (z; ))/ 2 is the distance from the axis

z to the centroid of the i-th segment.
The output mechanism includes accumulation and reduction operations. The result of
accumulating N rules looks like [34 — 35]:

— — -1
- | max (4,1 (). N (1)),
B= — = U , (1)

VuLiU[E;; (u)-# (u):| vuel | max (E(pl (”)ﬁ(pN (u))

where N'is the number of production rules.
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Then the upper and lower boundaries of the membership function are determined as

U, ()= rnaxi(/Jl (u)...g(p,vl (u)ﬁ YueU;

;é(u)=max / (u)...gw(u) YueU.

The type reduction is aimed at proceeding to the traditional fuzzy set. According to [35],
we reduce the types by finding the centroid of all the production rules. This results in
correlation of numbers containing the maximum and the minimum values:

1

(12)

C. _— (13)
( ) {CI(Z): ) r(z)}
where
N N
2u;; 2u;6;

— i=l — i=1 ) 14
KA ) Lo O ol £, 9

i=1 i=1

To find c,and c,, we apply the iteration Karnik-Mendel algorithm [36] with the
following formulae:

R N
Z” (Z)/UB( )+ Z uipy () Zuzgé(ui)-l_‘zui/ué(ui)
C](Z) i= L+l , c (Z) =1R l=11$/+i . (15)
S S ) Su)+ Suslu)

Defuzzification is the final stage. As reduction of types is accompanied by centroid
determination, defuzzification implies [35]:

uz%(cr+c,). (16)

3 Results and discussion

The values of the final change of ultrasonic responses recorded in set time intervals ¢ and
those of the current ultrasonic response are used as a crisp input. Times intervals are
selected so that to reduce the impact of deviations produced by multiple dispersion of
ultrasonic waves while the ultrasonic cleaning radiators are in service.

0 5 o0z 0.4 [ 06 o8 L 1

Fig. 4. The membership function for Ax;, x;and ui; and the rule base.
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Let four sensors be set with positions z= (0 0.33 67 1) and eight ultrasonic radiators —
z=(0 0.17 0.33 0.5 0.67 0.83 1). Then, the input data Ax. = (4x.1, 4xz,..., Ax.4) and
X: = (X1, X=2,... Xz4) are normalized spacious inputs to denote the difference between the two
final measurements (4x, =|x. — x.("|) and the value of the final measurement respectively.
The input data are u. = (41, 4=,..., uzg). In the general case, the ratio of the number of
sensors and ultrasonic radiators is determined by the size of the ultrasonic tank and capacity
of selected radiators. All the input variables Ax. and x. and output variables u are
normalized on [0, 1]. All the 4x. and x., as well as the output u. are classified into three
linguistic marks: large (L), medium (M) and small (S). For the sake of convenience, the
membership function is selected as an interval trapezium as is shown in Fig. 4. The rule
base (Table 1) is formed as follows: we suppose that the maximum impact results from
changes in sensor readings, while the signal itself can be conditioned not only by the
product’s contamination rate, but also by its geometry and position in the tank.

Table 1. Rule base.
Axl-/xi

S | M| L
S M|S |S
M | M| M|S
L L |L | M

We calculate a result for each u.= (4.1, u=,... u-g) separately. As it is necessary to
consider several controlling outputs with spacious dependency on inputs, formulae (14) for
the current u.o with the spacious coordinate z=z¢ are reduced to the following form ( for
ﬁw, , while for “, the changes are similar):

As,
= 2

i

2! (;W’ (Zi)|2|zi _Zo|_l|+;W’ (Zi+1)|2|zi+1 _Zo|_l|)

M, =

9

= (17)
Z As,
i=1

All the other actions are performed according to the algorithm of the controller
described above. They result in the intensity obtained for each radiator enabling the
product’s insonation.

While modelling ultrasonic cleaning with the control based on the developed controller,
power consumption has been reduced by 12.46% as compared with the control with time
only limitations. The period of ultrasonic cleaning has been reduced by 8.23%.

4 Conclusions

There are developed new fuzzy methods of control intended for spacious distributed
systems with input data difficult to be assessed through expert evaluation. The controller is
based on combining the 3-D fuzzy set and the interval fuzzy set of Type 2. The developed
controller differs from the traditional one by reduction of 3-D and that IT2 FS Type to IT1
FS Type. The rule base remains two-dimensional and is not dependent on the number of
sensors. On the basis of the described methods, the model of the 3-D IT2 FS controller is
developed and applied to cleaning mining machines. Spacious distribution of the process
and ambiguity of expert evaluation are considered while determining the course of the
process according to the data of ultrasonic sensors.
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