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Abstract 
In the article the stresses in the elements of geomechanical system were determined. Methodology of 
research organization, massif management options and massif state control parameters optimization 
are described. Rock massif tension at ore underground mining is simulated.
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In roach deposits developing a combination of                                                                                           

induced geomechanical processes with natural pro-
cesses violates the geodynamic equilibrium in upper 
crustal and activates the catastrophic events [1-5]. Sta-
bility of ore-containing massifs is determined by the 
level of stresses on the contour of stope ores, which 
is governed by voids filling with hardening mixtures 
after the evidence of this option effectiveness, for                                                                                             
example, the method of photoelasticity [6-8]. The 
most complex is the mining of heavy ore deposits by 
combined opencast and underground methods. The 
criterion of combination effectiveness is the preven-

tion of critical stresses [9-13]. Technique for or-
ganization of research includes the selection of the                          
optically active materials; development of a device 
for patterns loading at different angles of force vec-
tor inclination based on the lateral thrust; results pho-
toregistration devices [14-17]. Models were made 
from the optically active polyurethane with fringe 
value of 7,6 MPa for conditions: laying depth of mine 
working from the surface is 350m, the volumetric 
weight of overlying rocks is 3,0 t/m 3. The stability 
of a given contour point is described by the condition

(1)

where σ1, σ2- are the stresses in contour point; δ -is the 
angle of internal friction, 300; σrs – is the rock strength.

In-situ stress:

where γ – is the ore and host rocks density, t/m3; Н− is 
the stratification depth of the point from the surface, 
m; σin – is the stress in the model; GM – is the stress in 
the model, MPa; GH – is the in-situ stress, MPa.

For determining of stresses in the model the 
following expression is used:

(2)

(3)

where σ1.0  = 0,1 kgf/cm2 per one band; n – is the band 
number in point of interest of model. 

Stresses in the model and in-situ are determined 
from the expression

where k– is the similarity coefficient.
Condition of massif was investigated under con-

ditions:
- horizontal stress 0,5; 1,0; 1,5; 
- the force vector inclination angle to the vertical 

axis α = 0 for each value of horizontal stress;
- large fill modulus Е = 0,1 MPa, host rock modu-

lus – 1,4 MPa;

- options with cameras large fill and without it.
The options of massif control are characterized by 

stresses values, which are measured in cameras, in-
terchamber pillars and on the vertical section of the 
camera.
For a coefficient of horizontal stress λ = 0,5 the max-
imum stresses in arch keystone zones and camera 
walls are equal to 7,6×7,5 = 57 MPa, and in arch pillar 
apex to 7,6 х 2 = 15MPa. The maximum compression 
stresses in interchamber pillar are  7,6×6,5=49 MPa.

For a coefficient of horizontal stress λ = 1,0 the 
stresses in arch keystone zones, camera walls and 
in arch pillar apex are equal to 7,6×6,5 = 49 MPa. 
In pillar the maximum stresses are reduced to                                   
7,6×5,5 = 42 MPa.

For a coefficient of horizontal stress λ = 1,5 the 
stresses in arch keystone zones and camera walls are 
equal to 7,6 х 6,5 = 49 MPa, and in arch pillar apex to 
7,6×8,5 = 64 MPa in contrast to 15 for coefficient of 
horizontal stress λ = 0,5.

The stresses in arch pillar was:
− for a coefficient of horizontal stress 

λ = 0,5     7,6×5,5 = 41 MPa;
− for a coefficient of horizontal stress 

λ = 1,0    7,6×13,5 = 102 MPa;
− for a coefficient of horizontal stress 

λ = 1,5      7,6×18,5 = 140 MPa.
The maximum stress at the camera contours and 

keystones of arch pillar are developed with a coeffi-
cient of horizontal stress of 1,5 (Table 1).

Table 1. The stresses in the elements of geomechanical system, MPa

Thrust coefficient Open mined-out area Filled with hardening mixture
Arch pillar of block

0,5 3 2
1,0 7 5
1,5 13 9

Left arch keystone
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0,5 5 6
1,0 4 5
1,5 3 4

Right arch keystone
0,5 5 5
1,0 5,5 6,5
1,5 6 8

Optimization of the massif state control parame-
ters is often a decisive factor in ensuring the efficien-
cy of deposits development [1, 5, 7, 18].

Conclusions
The level of technogenic stresses is determined by 

simulation on low molecular materials with results 
photodetection. The most stress have an arch pillar 
of cameras. Large fill of cameras reduces the stress 
level up to 2 times. In options without large fills in 
interchamber pillars the stress concentration is close 
to critical.
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