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Abstract 
A method for the effective control of the pulp gas phase composition in the flotation 
process using dynamic effects of high energy ultrasound on the base of phased array 
technology and determination of its parameters are described.  
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Introduction  
Flotation is the most widely used 

separation process in the processing industries 
and is the most complete and versatile mineral 
processing operation. 

The existing methods and automatic 
systems of flotation process control does not 
allow to efficiently control the gas phase 
parameters in terms of changing characteristics, 
medium parameters and equipment state. 

For an understanding of the physical 
processes that determine flotation the accurate 
information about the gas phase parameters, the 
most important of which are the size and bubbles 
size distribution is required. These parameters are 
strongly dependent on the various operational, 
technical, physical and chemical factors, the 
effects of which should be considered in flotation 
process modeling [2,3]. 

It is known that for the pulp solid phase 
particle size distribution may exist the optimal 
gas phase bubbles size distribution in the 
flotation process. 

Thus, the task of research is to form and 
maintain a specified gas bubble size distribution 
which would correspond to the ground ore 
particle size distribution. 

Materials and methods 
To form the required gas bubble size 

distribution function, which would conform with 
the pulp solid phase particle size distribution in 
the flotation process, it is proposed to affect on 
the pulp flow with high-energy ultrasonic wave 
with given frequency and amplitude, resulting in 
a gas bubbles concentration change, and 
redistribution of their size. Character of 
redistribution depends on the size of the bubbles 
themselves, the frequency and amplitude of the 
incident radiation. Increasing the frequency and 
amplitude to the values at which the transition 
cavitation starts, bubble size will decrease due to 
crushing of larger bubbles. When decreasing the 
amplitude and frequency the bubbles will rise 
due to coalescence of smaller bubbles [4]. 

To solve this task, let’s form the control 
action based on the dynamic effects of high-
energy ultrasound using phased array technology, 
the main feature of which is computer-controlled 
driving pulses amplitude and phase of the 
individual piezoelectric elements in multi-
element transducer to control the parameters of 
the ultrasound beam, for example, angle, focal 
length, focal spot size [5,6]. 

Taking into account the above in the 
proposed method using the ultrasonic phased 

array mounted on the external wall of the 
flotation machine chamber, in the working area, 
at each current moment of time we generate the 
high energy ultrasound effect with a given 
frequency 0.7 - 2.5 MHz, (because the value 
lower than 0.7 MHz does not give a stable effect 
of bubble size changes, which is caused by the 
extreme nature of cavitation, and a value above 
2.5 MHz is not affect the change of necessary 
indicators) and the pressure amplitude of 102 -
5⋅106 Pa, (because the value lower 102 Pa not 
sufficient to effectively control the gas phase, 
and the values above 5⋅106 Pa not give quality 
indicators growth), wich focused on the window 
in the interchamber septum. The gas bubbles 
which formed in the aeration step, after impeller 
dispersing are exposed to focused ultrasound, 
which leads to variations in their concentration 
and desired size redistribution in the pulp flow. 

To focus precisely on the window in the 
interchamber septum it is necessary to calculate 
the parameters of a phased array and to construct 
its directivity pattern. 

The acoustical pressure of the array was 
calculated by modeling every element of the 
array as an independent simple source and 
summing the contribution of each simple source 
at each point in the field. The acoustic pressure 
p(x,y,z) at a specific point (x,y,z) in the field due 
to a simple source was calculated using the 
Rayleigh-Sommerfeld equation [7,8]  
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where W - is total acoustical power output from 
the array, ρ – is density of the medium, c – is 
speed of sound in the medium, A – is active 
transducer aperture, f – is frequency, S – is area 
formed by source, d – is distance from the source 
to the point (x, y , z), φ – is phase of oscillation, λ 
– is wavelength, and α – is attenuation in the 
medium. 

The active aperture (the total length of 
the array) is calculated by the following formula 
[6]. 

)1( −⋅+⋅= ngenA         (2) 
where A - is active aperture; g – is gap between 
nearest elements; e – is width of one element 
(typically e <λ / 2); n – is number of elements. 

Active aperture projection onto a plane 
seen along the refracted rays (effective active 
aperture Аeff) is given by  
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Recommended passive aperture is 
determined by probe frequency and the focal 
depth range as follows  

( )[ ] 5.0
maxmin4.1 FFW += λ   (4) 

Its contribution to the focal depth (near-
field length) is given (for nonfocused probes) by 
formula (5)  
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Array pitch of p is determined by the 
formula: 

gep +=  (6) 
where g – is the element gap; e – is the element 
width. 

The maximum width of a single element, 
which is determined by the maximum beam 
refracted angle by electronic control emax can be 
represented as follows 
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Note that the beam width is dependent on 
the focal length and the angle of entry. 

A focused beam is characterized by the 
focusing factor or normalized focus depth  

0N
FS ac

ac =   (8) 

with 0 < Sac < 1 and Fac < N0, and Fac – is the 
actual focal depth. 

An optical focus point is defined by 
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where R - lens curvature radius. 
The optical focusing factor is defined by 
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The net pressure due to all the elements was 
determined by summing the effects of each 
simple source: 
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The net power deposition at point (x,y,z) was the 
result of the attenuation [5] 
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The total energy at a point (x, y, z) is given by 
[8,9] 
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where ( )zyxI ,,  - intensity at the point (x, y, z), 
W∙m -2 

The phase of each element of the array was 
determined by 
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where φi is phase of element i in degrees, di is 
distance from the center of element i to the focus, 
d0 is the focus depth, n is an integer used to 
maintain 0 <= φi <= 360°. 

3. Results  
Normalized directivity pattern for a 

rectangular array with Z = 16 elements equally 
spaced from each other d = 0,6 mm in the plane 
(Fig. 1) used in the simulation with software and 
hardware tools TAC (Transducer Array 
Calculation) [10] is presented on Fig. 2. 

Figure 1 Phased array configuration 
 

 

 

 

 

 
 

Figure 2 Directivity pattern of a rectangular phased 
array with Z=16, ϕ =0° 
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Figure 3 Directivity pattern of entire 

arrangement 
 
Taking into account the above, for the 

method implementation we form the ultrasonic 
action with certain amplitude and frequency 
using phased array at each current moment of 
time in a flotation machine working zone that 
will provide the required gas bubble size 
distribution in the pulp flow. 

Conclusions. Simulation results of the 
high energy ultrasound impact on the pulp gas 
phase using ultrasonic phased array allow to form 
the required gas bubble size distribution function, 
which will conform with the pulp solid phase 
particle size distribution in the flotation process. 
Thus, the proposed flotation control method 
allows to implement efficient control of the pulp 
gas phase composition, improve the quality of 
the concentrate and the efficiency of the 
beneficiation process. 
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