% и фосфора 0,05-0,06 %. Проведены лабораторные плавки с получением марганцевых сплавов. Показана эффективность предлагаемой технологии.

Необходимо продолжить исследования с целью получения марганцевых концентратов для порошковой металлургии.

Список литературы

- 1. **Зеликман А. Н**., **Вольдеман Г.М.** Теория гидрометаллургических процессов.- М.: Интермет Инжиниринг, 2003. 464 с.
- 2. **Каковский И.А.**, **Набойченко С.С.** Термодинамика и кинетика гидрометаллургических процессов.- Алма-Ата:Наука, 1986.-272 с.

Рукопись поступила в редакцию 21.03.13

УДК 622.785:669.74

- В.В. КРИВЕНКО, В.М. СЕРВЕТНИК, кандидаты техн. наук, доц.,
- В.В. БЕЛОУС, КМИ ГВУЗ «Криворожский национальный университет»
- А.Н. ОВЧАРУК, д-р техн. наук, проф., Национальная металлургическая академия Украины
- И.И. КУЧЕР, ООО «Проминтэк»

ВОПРОСЫ МЕТАЛЛУРГИЧЕСКОЙ ОЦЕНКИ МАРГАНЦЕВОГО СЫРЬЯ ДЛЯ ПРОИЗВОДСТВА ФЕРРОСПЛАВОВ

Приведены аналитические исследования отечественной и зарубежной марганцеворудной сырьевой базы, сравнение показателей качества марганцевых руд и концентратов, а также приведены технические требования, предъявляемые к качеству марганецсодержащих материалов используемых для выплавки ферросплавов.

Проблема и ее связь с научными и практическими задачами. В Украине балансовые запасы составляют около 2 млрд т. Более 70 % отечественных марганцевых руд труднообогатимы и относятся к карбонатным и окисно-карбонатным разновидностям. Отличительной особенностью марганцевых руд отечественных месторождений является относительно невысокое содержание марганца и повышенная концентрация фосфора и кремнезема [1], что не позволяет, в отличие от большинства зарубежных руд, использовать сырье без предварительного обогащения и окускования.

Анализ исследований и публикаций. Поскольку технический уровень производства марганцевых ферросплавов определяется, прежде всего, качеством используемого сырья, то для адекватности его оценки необходимо сопоставить показатели качества марганцевых концентратов, производимых в Украине и за рубежом (табл. 1 и 2).

Технические требования, предъявляемые к качеству марганцевых руд и концентратов для выплавки ферросплавов

Компонент	Массовая доля, %								
	Ферромарганец				Силикомарганец				
	Украина Іс	Западная		США	Украина	Западная		США	
	_	Европа		«A»c	IIc	Европа		«Б»c	
Mn, не менее	43,0	48,0	46,0	46,0	34,0	44,0	40,0	40,0	
Fe, не более	-	-	7,5	8,0	-	9,0	12,0	16,0	
SiO ₂ , не более	-	7,0	9,0	12,0	-	10,0	12,0	15,0	
Р не более	_	0.12	0.15	0.18	_	0.15	0.15	0.30	

Примечание: указаны требования к Никопольским окисным концентратам и рудам и концентратам зарубежных стран.

Сравнение фактических показателей качества марганцевых концентратов, %

Таблица 2

Компонент	Украина		А посто туга	Гобол	Гиолития	IOAD	
Компонент	Ic	IIc	Австралия	Габон	Бразилия	ЮАР	
Mn	43,7	36,1	48,5	51,0	49,0	51,0	
P	0,19	0,17	0,09	0,10	0,09	0,04	
SiO ₂	13.1	26.1	6.8	2.6	2.5	4.8	

Постановка задания. Трудности с производством конкурентоспособных марганцевых сплавов на отечественном сырье с относительно невысокими технико-экономическими показа-

[©] Кривенко В.В., Серветник В.М., Белоус В.В., Овчарук А.Н., Кучер И.И., 2013

телями привели к необходимости вовлечения в производство импортного сырья. Особенно это стало актуально в последние годы, когда отечественные предприятия начали наращивать выпуск низкофосфористых марок силикомарганца и ферромарганца.

Изложение материала и результаты. Технология и технико-экономические показатели производства марганцевых ферросплавов в значительной мере определяются качеством марганцеворудного сырья: химическим, минералогическим и гранулометрическим составами, физическими свойствами. Месторождения марганцевых руд на земном шаре распределены крайне неравномерно. Столь же неравномерен их вещественный состав, что связано с генезисом руд.

Большая часть мировых запасов марганцевых руд (более 50 %) сосредоточена в Южно-Африканской республике (ЮАР), которая является крупнейшим их производителем и экспортером. Ниже приведены данные по производству марганцевых руд основных странпроизводителей, тыс. тонн: ЮАР - 3175; Бразилия - 2722; Австралия - 1633; Габон - 2268 [2].

Сравнивая химический состав представленных для исследований зарубежных руд и окисных украинских концентратов I и II сорта, необходимо отметить, что основными показателями качества зарубежных руд являются высокая доля марганца, низкое содержание фосфора, кроме руды, поставляемой из Грузии. Качество зарубежных руд сравнили с украинскими концентратами I и II сорта, исходя из относительного модульного параметра (табл. 3), который представляет собой отношение массовой доли элемента или компонента в руде к массовой доле марганца в ней или отношение суммы оксидных компонентов к сумме других компонентов в марганецсодержащем сырье, выраженных в процентах.

Химический состав и модульные параметры

Таблица 3

Страна-	Массовая доля, %			Относительное содержание, уд.ед.				
производитель	Mn	Fe		P	P/Mn		(CaO+MgO)/SiO ₂	
Грузия	47,20	1,300	0,207		0,00438		0,2069	
Бразилия	47,60	6,500	0,0060		0,0013		0,2548	
Австралия	47,00	6,250	0,032		0,0007		0,2703	
Гана-І	30,00	1,202	0,070		0,0023		0,6925	
Гана-II	39,70	4,962	0,	,140 (0,0035	0,0269	
Гана-III	30,50	0,734	0,	110	0,0036		0,7145	
Украина Концентрат: 1 сорта 2 сорта	43,0 36,0	1,509 1,494	,	176 202	0,0041 0,0056		0,2890 0,2440	
Страна-	Относительное содержание, уд.ед.							
производитель	Fe/Mn	S/Mr			O ₂ /Mn	Al ₂ O ₃ /Mn	(Na ₂ O+K ₂ O)/Mn	
Грузия	0,0275	0,001	12 0,2		2730	0,0398	0,01820	
Бразилия	0,1365	0,000	0,0002		1953	0,0252	0,02899	
Австралия	0,1329	0,002	1	0,2872		0,0346	0,00319	
Гана-І	0,0400	0,0056	56	0,	4680	0,0883	0,01733	
Гана-II	0,1249	0,1249 0,0006		0,	861 0,1058		0,0206	
Гана-III	0,02406	0,007	1	0,	4432	0,0721	0,01475	
Украина								

Концентрат:

1 сорта

2 сорта

0.0351

0.0415

Анализ значений относительного модульного параметра фосфора (P/Mn), как показателя удельной доли фосфора по отношению к содержанию марганца, свидетельствует, что украинские марганцевые концентраты характеризуются худшими значениями этого параметра, чем зарубежные руды. По содержанию серы и ее модулю отечественное сырье превосходит зарубежное. Модуль железа существенно больше у руды из Бразилии, Австралии и окисно-карбонатной из Ганы, что не обеспечивает получение марганцевых ферросплавов и, прежде всего, силикомарганца с более высоким по сравнению с базовым (65 %) содержанием марганца. В настоящее время этот фактор является одним из главных, обеспечивающих высокую конкурентоспособность силико-

0.3462

0.4681

0.00046

0.00066

0.0410

0.0515

0.04953

0.05666

марганца на мировом рынке. В то же время, наличие высококачественных руд, позволяет зарубежным производителям выплавлять качественные марганцевые ферросплавы непосредственно из кусковых руд, тогда как переработка украинских марганцевых руд невозможна без дополнительных и затратных статей передела, в том числе производства обогащенных концентратов и их агломерации, при которой извлечение Мп и расход электроэнергии составляет, соответственно, 97 % и 150 кВт·ч/т.

Для сравнения технологических особенностей выплавки силикомарганца по принятой схеме с использованием импортной руды выбирали производственные данные по выплавке силикомарганца с фосфором до 0,35 % и 0,15-0,25 %.

Анализировали усредненные месячные данные по работе печей, простои которых в исследуемый период не превышали 5%, и сравнивали данные по выплавке сплава с фосфором до 0.35 %.

Следует отметить, что результаты выплавки сплава с фосфором 0,35%по принятой на ПАО «НЗФ» схеме с использованием шлака малофосфористого передельного (ШМП) бесфлюсовой плавки ферромарганца хорошо согласуются с количественной оценкой влияния шлака на основные показатели производства. Так расход электроэнергии составил 4054кВт·ч/т, а извлечение марганца 82,2 % (с учетом отходов производства). Согласно уравнениям регрессии эти показатели оцениваются соответственно величинами 4088кВт·ч/т и 81,5 %. Иными словами эти результаты отличаются высокой надежностью и соответствуют многолетней практике выплавки силикомарганца с содержанием фосфора 0,35 %.

Использование в шихте импортной руды для получения аналогичного по качеству сплава не позволило достигнуть заметных преимуществ по извлечению марганца, а расход электроэнергии даже увеличился. Вероятно, это связано не столько с качеством сырья, сколько с изменением электрических параметров плавки, вызванных повышенным расходом восстановителя.

Вместе с тем, если учесть расходы электроэнергии при агломерации (≈150 кВт·ч/т) и выплавке ШМП (850-900 кВт·ч/т), то суммарный расход превышает 5000 кВт·ч/т.

Более наглядно сравнение металлургической ценности различных видов сырья можно провести на примере выплавки силикомарганца с фосфором 0,15 - 0,25%. Так как для выплавки сплава такого качества может быть использовано сырье с фосфорным модулем не выше 0,002, выплавку сплава осуществляют по двум вариантам: по первому - с использованием в шихте более 80% малофосфористого шлака, по второму - на высококачественной Австралийской руде.

При использовании указанного количества ШМП наглядно проявляется его отрицательное влияние на производственные показатели. Так, с понижением фосфора в сплаве с 0,25 до 0,15 % (соответствующий рост доли ШМП в шихте с 82 до 93 %) извлечение марганца снижается с 72 до 60 %, а удельный расход электроэнергии возрастает на 6-7 %.

Применение Австралийской руды позволяет заметно повысить извлечение марганца (до \approx 82 %) и снизить расход электроэнергии на 200-250 кВт·ч/т.

Приведенные результаты показывают, что при использовании отечественного сырья для производства силикомарганца с фосфором не более 0,35 % количество малофосфористого шлака в шихте для достижения относительно приемлемых показателей не должно превышать 90-95 кг/т сплава. Увеличение доли ШМП при выплавке металла с фосфором 0,15-0,25 % приводит к резкому снижению всех показателей процесса. В этом случае безусловное преимущество имеют высококачественные импортные руды с фосфорным модулем не выше 0,002.

Выводы и направления дальнейших исследований. Анализ современного состояния марганцеворудной базы показывает, что основными производителями высококачественной марганцевой руды продолжают оставаться Австралия, Гана, Бразилия, ЮАР. В связи с истощением запасов высококачественной руды в мировой практике все большее распространение получают методы предварительного обогащения и окускования руды.

Основной отличительной особенностью исследуемого марганцевого сырья зарубежных производителей является низкое содержание фосфора (P/Mn<0,0035) и кремнезема (SiO₂/Mn от 0,5 и ниже), что в сочетании с технологическими операциями по предварительной подготовке сырья(усреднение, окускование, нагрев и др.) позволяет достигать высоких технико-экономических показателей. Вместе с тем, несмотря на расширение географии запасов руды (Китай, Казахстан, Россия и др.), ее добыча практически не увеличивается, а цены на сырье на

мировом рынке имеют тенденцию к увеличению.

Сравнительным анализом металлургической ценности отечественного и импортного сырья при выплавке сплавов, установлено, что при производстве силикомарганца с различным содержанием фосфора возможно сочетание всех видов сырья, однако в связи с низкой температурой плавления ШМП доля его в шихте не должна превышать 40-45 % (сплав с Р до 0,35 %). Для получения сплава с фосфором от 0,15 до 0,20 % необходимо использовать импортную руду с подшихтовкой ШМП.

Список литературы

- 1. **Грищенко** С.Г. Ферросплавная промышленность, как составная часть металлургического комплекса Украины, 1991-1998 годах//Материалы научно-практической конференции: Актуальные проблемы и перспективы электрометаллургического производства. Днепропетровск, 1999. С. 17-20.
 - 2. Гасик М.И. Марганец.- М.: Металлургия, 1992. 608 с.

Рукопись поступила в редакцию 23.03.13

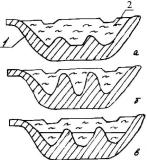
УДК 622.785:669.74

В.В. КРИВЕНКО, канд. техн. наук доц.

А.Н. ОВЧАРУК, д-р техн. наук проф., О.Г. ГАНЦЕРОВСКИЙ, А.Ю. ТАРАН,

А.С. ФИЛЕВ, И.И. КУЧЕР, И.Ю. ФИЛИППОВ, кандидаты техн. наук

КМИ ГВУЗ «Криворожский национальный университет»


ИССЛЕДОВАНИЕ ЭФФЕКТИВНОСТИ ИСПОЛЬЗОВАНИЯ ИЗЛОЖНИЦ РАЗЛИЧНОЙ КОНСТРУКЦИИ ПРИ РАЗЛИВКЕ ФЕРРОСИЛИКОМАРГАНЦА

На основании данных исследований установлен механизм затвердевания ферросиликомарганца в изложницах разливочных машин различной конструкции. Определена конструкция изложницы, обеспечивающая получение фракционированного сплава с допустимым содержанием некондиционных классов.

Проблема и ее связь с научными и практическими задачами. В настоящее время все более жесткие требования предъявляются к ферросплавам по химическому и фракционному составу со стороны производителей металла. В связи с этими требованиями на ферросплавных заводах введены в эксплуатацию технологические линии по производству фракционных ферросплавов, отвечающих требованиям потребителей, в состав которых входит дробильносортировочное оборудование. При дроблении готовой продукции (кремнистых, марганцевых и других ферросплавов) происходит весьма нежелательное явление - это образование некондиционных фракции (фракции 0-5 мм и 0-10 мм), которые имеют низкий потребительский спрос и отрицательно влияют на технико-экономические показатели производства ферросплавов.

Анализ исследований и публикаций. Аналитические исследования показали, что в мировой практике производства ферросплавов существуют технологические и технические решения, направленные на снижение образования некондиционных фракций. Однако полностью решить эту задачу в настоящее время не представляется возможным.

Постановка задания. Для разработки решений, позволяющих снизить потери годной продукции, провели исследования по использованию рациональных конструкций изложниц разливочных машин, используя теорию и практику процесса кристаллизации слитка, не снижая удельной производительности разливочной машины.

Рис. 1. Конструкции изложниц для машинной разливки ферросиликомарганца: a - стандартная; δ - стержневая; s - ячеистая; I - изложница в разрезе; 2- сплав

Изложение материала и результаты. В настоящее время на Никопольском заводе ферросплавов (ПАО «НЗФ») находятся в эксплуатации изложницы трех видов (рис. 1): стандартные с двумя поперечными пережимами, которые являются основными и опытными стержневые и ячеистые (24 ячейки).

Их разрабатывали для увеличения выхода фракционированных ферросплавов, в основном для снижения выхода фракции более 80 (100) мм и фракции менее 5 (10) мм без использования дробильно-

сортировочного оборудования. Различие между изложницами, приведенных конструкций, за-

_

[©] Кривенко В.В., Овчарук А.Н., Ганцеровский О.Г., Таран А.Ю., Филев А.С., Кучер И.И., Филиппов И.Ю., 2013