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Abstract. In this paper we study the possibility of construction indicators-precursors relying on one of the 
most power-law tailed distributions – Levy’s stable distribution. Here, we apply Levy’s parameters for 29 
stock indices for the period from 1 March 2000 to 28 March 2019 daily values and show their effectiveness 
as indicators of crisis states on the example of Dow Jones Industrial Average index for the period from 2 
January 1920 to 2019. In spite of popularity of the Gaussian distribution in financial modeling, we 
demonstrated that Levy’s stable distribution is more suitable due to its theoretical reasons and analysis 
results. And finally, we conclude that stability α and skewness β parameters of Levy’s stable distribution 
which demonstrate characteristic behavior for crash and critical states, can serve as an indicator-precursors 
of unstable states. 

1 Introduction 
The efficient financial market is an integral part of the 
modern market economy. With a rapidly growing 
financial market, new risk management methods are 
becoming more demanded that take into account new 
non-Gaussian distributions. The task of monitoring and 
predicting of possible critical states of financial and 
economics systems are very relevant today. In our 
opinion, the availability of the time series for stock 
markets gives the opportunity to solve such tasks in very 
effective ways. Financial crises that regularly shake the 
world economy are characterized by noticeable 
fluctuations in stock indices, thereby causing noticeable 
changes in the statistical distributions of empirical data 
[1, 2]. Consequently, the analysis of the form and 
parameters of the distribution of price fluctuations of the 
stock market indexes will make it possible to predict the 
possible occurrence of the financial crisis. 

In 1900, Bachelier proposed the first model for the 
stochastic process of returns – an uncorrelated random 
walk with independent, identically Gaussian distributed 
(i.i.d) random variables [3]. This model is natural if one 
considers the return over a time scale ∆t to be the result 
of many independent “shocks”, which then lead by the 
central limit theorem to a Gaussian distribution of 
returns [3]. However, empirical studies [4-6] show that 
the distribution of returns has pronounced tails in 
striking contrast to that of a Gaussian.  

For time series S(t) which describes the dynamics of 
price on stock index, the returns g(t) over some time 
scale Δt is defined as the forward changes in the 
logarithm of S(t),  

 ( ) (ln ( ) / ln ( )).g t S t t S t     (1) 

For small changes in the price, the returns g(t) is 
approximately the forward relative change 

 ( ) ( )( ) .
( )

S t t S tg t
S t

  
   (2) 

To illustrate mentioned above fact, we show in Fig. 1 
the daily returns of the DJIA market index for 1900-
2019 and contrast it with a sequence of i.i.d. Gaussian 
random variables.  

 
Fig. 1. Probability density function of DJIA daily normalized 
returns during the period from 1900 to 2019. 

It is obvious that the distribution of returns has heavy 
tails and in the general case can be described as  

 P(g > x) ~ x–(1+α), α  (0, 2]  (3) 

SHS Web of Conferences 65, 06006 (2019) https://doi.org/10.1051/shsconf/20196506006
M3E2 2019

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution  
License 4.0 (http://creativecommons.org/licenses/by/4.0/).



 

and for stock indexes it has a universal look, known as 
the cubic laws of stock market activity [6].  

Fig. 2 confirms the cubic law for the DJIA index. 

 
Fig. 2. Cumulative distributions of the normalized DJIA daily 
returns. Fits yield values α = 2.02 ± 0.02. 

In the analysis of cotton prices, Mandelbrot observed 
that in addition to being non-Gaussian, the process of 
returns shows another interesting property: “time 
scaling” — that is, the distributions of returns for various 
choices of ∆t, ranging from 1 day up to 1 month have 
similar functional forms [7]. Motivated by 
(i) pronounced tails, and (ii) a stable functional form for 
different time scales, Mandelbrot [7] proposed that the 
distribution of returns is consistent with a Levy stable 
distribution [8] – that is, the returns can be modeled as a 
Levy stable process. Levy stable distributions arise from 
the generalization of the Central Limit Theorem (CLT) 
to random variables which do not have a finite second 
moment. 

The CLT [9], which offers the fundamental 
justification for approximate normality, points to the 
importance of α-stable distribution: they are the only 
limiting laws of normalized sums of independent, 
identically distributed random variables. Gaussian 
distributions, the best known member of the stable 
family, have long been well understood and widely used 
in all sorts of problems. However, they do not allow for 
large fluctuations and are thus inadequate for modeling 
high variability. Non-Gaussian stable models, on other 
hand, do not share such limitations. In general, the upper 
and lower tails of their distributions decreases like a 
power function. In literature, this is often characterized 
as heavy or long tails. In the last two or three decades, 
data which seem to fit the stable model has been 
collected in fields as diverse as economics, 
telecommunications, hydrology and physics (see for 
example [6]).  

During our research of Levy’s stable distribution, 
applied for the stock market, we have found that there 
are many articles, which were devoted to it [4-6, 10-12]. 
Consequently, it was pointed out that Levy’s stable 
distribution fits better that the Gaussian distribution to 
financial markets. It is still debatable whether Levy’s 
stable distribution is appreciable, since there is not 

enough theoretical material and there is not a universal 
analyzing method for estimating parameters of Levy’s 
stable distribution.  

Therefore, during our research we discuss theoretical 
material applied to Levy’s stable distribution, and 
discuss whether it acceptable for indicating crisis states 
on financial markets or not.  

Our research structured as follows. Section 2 is 
introduction to Levy’s stable distribution and its 
properties. Section 3 describes different approaches for 
estimating stable distribution parameters. In Section 4 
we described how to estimate Levy’s stable distribution 
and which method the most appreciable method for 
calculating its parameters. Section 5 present classified 
DJIA price data, and obtained results. 

2 Levy’s stable distribution properties 
Levy’s stable distribution being the generalization of the 
CLT, became an addition to a wide class of distributions. 
Assume that 

1

n
n ii

P x


   is the sum of i.i.d. random 
variables xi. Then, if the variables xi have finite second 
moment, the CLT holds and Pn is distributed as a 
Gaussian in the limit n→∞. 

In case when the random variables xi are 
characterized by a distribution having asymptotic power-
law behavior (3) Pn will converge to a Levy stable 
stochastic process of index α in the limit n→∞.  

Stable distribution is presented by 4 parameters: 
α  (0, 2] is the stability parameter, β  [–1, 1] the 
skewness parameter, γ  [0, ∞) the scale parameter and 
δ  (–∞, ∞) the location parameter. Since the variables xi 
is characterized by four parameters, we will denote α-
stable distribution by S(α, β, γ, δ) and write 

 x ~ S(α, β, γ, δ)  (4) 

Stable distribution has a property that the mean 
cannot be defined for α  (0, 1] and the variance 
diverges for α  (0, 2).  

Furthermore, the Levy stable distributions cannot be 
defined in closed form for a few cases: the case of 
(α, β) = (2, 0) corresponds to the Gaussian distribution, 
(α, β) = (1, 0) to the Cauchy distribution. Instead, it is 
expressed in terms of their Fourier transforms or 
characteristic functions (CF), which we denote as λ(k), 
where k denotes the Fourier transformed variable. 

For Levy stable distribution, if the variable xi follows 
S(α, β, γ, δ), the CF can be expressed as [13]  

 
exp{ | | [1 ( )]}, ( 1)

2
( ) .

exp{ | | [1 ln ]}, ( 1)

ki k k i tg
k
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 (5) 

It worth considering that with value of β = 0, the 
distribution is symmetric, right-tailed if positive, and 
left-tailed if negative.  
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3 Methods for estimation of stable law 
parameters 
There are numerous approaches which can estimate 
stable distribution parameters. Since the probability 
density functions is not always expressed in a closed 
form, there are some challenges to overcome the analytic 
difficulties. Thus, there have been constructed a variety 
of methods: the approximate maximum likelihood 
estimation [14, 15], quantiles method [16, 17], fractional 
lower order moment method [18, 19], method of log-
cumulant [20], the logarithmic moment method [21] and 
more. Unfortunately, some of those methods cannot be 
applied due to computational problems associated with 
limited range of estimation, restricted range of 
parameters, high computational costs, or requiring large 
number of data. However, several of them should be 
mentioned. 

3.1 Maximum Likelihood Method 

DuMouchel was the first to obtain approximate ML 
estimates of α and γ (assuming δ = 0) [22]. A 
multinomial approximation to the likelihood function is 
used in his approach. Under some additional 
assumptions on α̂ and the likelihood function, 
DuMouchel has shown the obtained estimates to be 
consistent and asymptotically normal. However, the 
computational effort involved seems considerable. 

A direct method can be formulated, after Brorsen and 
Yang [14], as follows. The standard symmetric 
probability density functions defined by Zolotarev [23] 
is presented as  

 /( 1) ( ,0)
/ 2

1/ ( 1)

0

( ) ( ,0) ,
1

Uxf x x U e d
  




 


 
 

 
    (6) 

for α ≠ 1, x > 0, where Uα is defined by 
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and 0  is explained here [24]. Therefore, the parameters 
α, γ and δ can be estimated from the observations xi 
(i = 1, 2, ..., n) by maximizing the log likelihood 
function 

1
log ( ) log log( 1)
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    (8) 

where zi = |xi – δ|/γ. 
To avoid the discontinuity and nondifferentiability of 

the symmetric α-stable density function at α = 1, α is 
restricted to be greater than one. Caution must be used 
when evaluating the integrals (6) and (8), since the 
integrals are singular at η = 0. 

An obvious disadvantage of this method is that it is a 
highly nonlinear optimization problem and no 
initialization and convergence analysis is available. 

3.2 Sample Quantiles Methods  

Let xi be the f-th population quantile, so that 
S(α, β, γ, δ)(xi) = f. Let ˆ fx  be the corresponding sample 
quantile, i.e. ˆ fx  satisfies Fn( ˆ fx ) = f. As McCulloch [17] 
points out, to avoid spurious skewness in finite samples, 
a correction must be made. If the xi’s are arranged in 
ascending order, the correction may be performed by 

identifying xi with ( )ˆq ix , where 2 1( )
2
iq i

n


 , and then 

interpolating linearly to f from the two adjacent q(i) 
values. Then ˆ fx  is a consistent estimator of xf, the f 
quantile.  

3.3 Regression Method 

Koutrouvelis [13, 25] presented a regression type 
method of estimating the four parameters of stable 
distribution. It is based on the following algorithm 
concerning the CF. From (5) it can be derived that 

 2log( log ( ) ) log(2 ) log .k k       (9) 

The real and imaginary parts of λ(k) are for α ≠ 1 
given by  

R ( ) exp( ) cos ( ) ,
2

k k k k sign t tg  
    

         
 

and 

I ( ) exp( )sin ( ) .
2

k k k k sign t tg  
    

         
 

The last two equations lead, apart from 
considerations of principal values, to  

I

R

( )
( ) .

( ) 2
k

arctg k tg sign k k
k

 
 


       

  
 (10) 

Equation (9) depends only on α and γ and suggests 
that we estimate these parameters by regressing  

y = log(–log|λN(k)|2)  

on ω = log|k| in the model  

yn = m + αωn + εn, n = 1, 2, ..., N, (11) 

where (kn) is an appropriate set of real numbers, 
m = log(2γα), and εn responds for an error term.  

With estimated and fixed parameters α and γ, the 
values of β and δ can be obtained by using equation (9). 
Let gn(u) = Arctg(λI, n / λR, n), where Arctg denotes the 
principal value of the arctan function. Then we can 
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estimate β and δ by regressing z = gn(u) + πτn(u) on u 
and sign(u)|u|α in the model 

 ( ) , 1, . . . , ,
2l l l l lz u tg sign u u l L        

 
 (12) 

where (ul) is an appropriate set of real numbers and vl 
denotes an error term. 

As it was mentioned before, most of these methods 
have high computational costs, restricted ranges of 
parameters or require a large number of data. Thus, we 
would like to use simple approach proposed by 
Koutrovelis [25] which is based on CF and it is tested to 
be valid and clears the above issues. 

4 Estimation of Levy’s stable 
distribution 
When we analyze data, we often assume that they are 
ergodic [26]. In general, if random variables xn (n = 1, 2, 
..., N) are ergodic with the integrable function f(x), the 
preserving map T(x) and the measure p(x)dx in the space 
M, then the following equation holds [27]:  

 
1

1lim ( ) ( ) ( ) .
N

n

MN n
f T x f x p x dx

N


    (13) 

Then, to consider characteristic functions, equation 
(13) comes out to be the following ergodic equality [27]:  
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for which we have  
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This assumption allows us to empirically obtain the 
probability distribution. Hence, the empirical 
characteristic function λN(k) of a large number of data set 
xn (n = 1, 2, ..., N) can be calculated as 

 
1

1ˆ ( ) exp( ).
N

N n
n

k ikX
N




    (16) 

When the data follow Levy’s stable distribution with 
the parameters (α, β, γ, δ) (α ≠ 1, k > 0), the 
characteristic function can be presented as  

 ˆ ( ) exp ( ) 1 tan
2N k i k k i 

   
        

   
 (17) 

from equation (5). With equation (17), we can derive 

 ˆ ˆ ˆ ˆlog( log ( ) ) log logN k k        (18) 
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where each of , I
ˆ ( )N k  and , R

ˆ ( )N k  corresponds to the 
imaginary and real part of the empirical CF. Through 
linear regression method in equations (18) and (19) 
around k = 0 the parameters (α, β, γ, δ) can be estimated. 
In case when (γ, δ) are far from the standard value of 
(1, 0), each parameter can not be estimated accurately. In 
this case the data should be normalized to (γ, δ) = (1, 0) 
and then (α, β) can be estimated.  

While the standard estimation method use the 
probability density function from the actual data with 
difficulty in estimating the tails of the distribution which 
are essentially important part of Levy’s stable 
distribution, the method which we use in this paper can 
indicate the tail through the characteristic function. In 
addition, this method has a faster convergence according 
to the increasing number of data. The introduced integer 
τn(u) accounts for possible nonprincipal branches of the 
arctan function.  

5 Data classification of Dow Jones 
Industrial Average 
In this paper we have estimated Levy’s parameters for 
stock indices for the period from 1 March 2000 to 28 
March 2019 daily values. This data include stock indices 
of developed countries, developing and emergent 
markets. The data were downloaded from Yahoo 
Finance (http://finance.yahoo.com) and Investing.com 
(https://www.investing.com). The distribution 
parameters were found for the entire time series and the 
algorithm of a moving window. For moving window, the 
part of the time series (window), for which there were 
calculated corresponding parameters, was selected. 
Then, the window was displaced along the time series in 
definite increment (step) and the procedure repeated 
until all the studied series had exhausted. For our case 
the window width is 500 and 1000 days, time step 1 and 
5 days. The calculation results for the whole time series 
of the order-decreasing parameter α are shown in 
Table 1. 

The considered stock indices for the specified period 
include crisis phenomena and these periods obviously 
affect the dynamics of distribution parameters. 
Therefore, you should calculate them in the model of the 
moving window and compare their dynamics with the 
dynamics of the original time series. 

For analysing and explaining basic characteristics of 
complex systems with α-stable distribution, we have 
chosen Dow Jones Industrial Average index (DJIA) as 
the most quoted financial barometer in the world. In 
addition, like complex systems, financial markets 
fascinating examples of complexity: a real world 
complex system whose evolution is dictated by the 
decisions of many people, generating huge amounts of 
data. For understanding of the falls that occurred on this 
market, we analysed different scientific articles [31-32], 
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and relying on our research, we classified them on 
crashes and critical event, and separated DJIA time 
series into two parts where first part occupies period 
from 2 January 1920 to 3 January 1983 and second part 
from 4 January 1983 to 18 March 2019, for having better 
overview of its dynamics. Note that the data set here is 
an every 1-day data, except those when stock market 
closed and does not work. During our research it was 
established that:  
1. Crashes are short, time-localized drops, with strong 

losing of price each day.  
2. Critical events are those falls that, during their 

existence, have not had such serious changes in price 
as crashes. 

Table 1. The calculated Levy’s stable parameters α and β for 
the considered stock indices. The results were obtained for the 

length of window 500 and time step 1 day.  

N Index α β 
1 Nikkei 225 1.71 -0.240 
2 IBEX 35 1.71 -0.206 
3 CAC 40 1.70 -0.247 
4 OMX Stockholm 30  1.70 -0.152 
5 FTSE MIB  1.69 -0.374 
6 Swiss Market Index 1.69 -0.210 
7 DAX PERFORMANCE 1.68 -0.199 
8 FTSE 100 1.68 -0.180 
9 Warsaw Stock Exhange WIG  1.68 -0.022 
10 BEL 20 1.67 -0.236 
11 TA 35 1.67 -0.186 
12 KOSPI Composite  1.66 -0.304 
13 S&P/TSX Composite 1.60 -0.349 
14 AEX 1.60 -0.214 
15 BIST 100 1.60 -0.120 
16 Dow Jones Industrial Average 1.59 -0.126 
17 BOVESPA 1.58 -0.080 
18 Hang Seng  1.58 -0.153 
19 S&P 500 1.57 -0.151 
20 IPC MEXICO 1.48 -0.118 
21 NASDAQ Composite Index 1.48 -0.139 
22 RTS Index  1.46 -0.081 
23 BSE Sensex 30 1.44 -0.027 
24 Nifty 50  1.42 -0.047 
25 Jakarta Stock Exchange Composite 1.27 -0.043 
26 Shanghai Composite 1.27 -0.046 
27 KSE 100  1.05 -0.050 
28 Ukraine PFTS  0.83 -0.089 
29 S&P Merval 0.74 -0.055 

 

As it is seen from the Table 1, during DJIA 
existence, many crashes and critical events shook it. 
According to our classification, events with number (1, 
10, 13, 15) are crashes, all the rest – critical events. From 
the data above, we estimate the parameters α and β of the 
stable distribution that the best describes the empirical 
returns.  

Further, comparing the dynamics of the actual time 
series and the corresponding measures of complexity, we 
can judge the characteristic changes in the dynamics of 
the behavior of complexity with changes in the stock 
index. If the estimated parameter behaves in a definite 
way for all periods of crashes, for example, decreases or 

increases during the pre-critical period, then it can serve 
as an indicator-precursor of such a crashes phenomenon.  

Table 2 shows the major crashes and critical events 
related to our classification. 

Table 2. Major Historical Corrections since 1920. 

N Interval Days in correction Decline, % 
1 03.09.1929-29.10.1929 41 39,64 
2 01.03.1938-31.03.1938 23 24,15 
3 08.04.1940-05.06.1940 42 25,10 
4 21.08.1946-10.09.1946 14 16,35 
5 30.07.1957-22.10.1957 60 17,51 
6 19.03.1962-28.05.1962 50 19,91 
7 18.07.1966-07.10.1966 59 12,84 
8 09.04.1970-26.05.1970 34 20,35 
9 24.10.1974-04.10.1974 52 27,45 
10 02.10.1987-19.10.1987 12 34,16 
11 17.07.1990-23.08.1990 28 17,21 
12 01.10.1997-21.10.1997 15 12,43 
13 17.08.1998-31.08.1998 11 18,44 
14 14.08.2002-01.10.2002 34 19,52 
15 16.10.2008-15.12.2008 42 30,21 
16 09.08.2011-22.09.2011 32 11,94 
17 18.08.2015-25.08.2015 6 10,53 
18 29.12.2015-20.01.2016 16 11,02 
19 03.12.2018-24.12.2018 15 15,62 
 
From the figures below we can see that our 

parameters start to decrease in crisis states. Such 
abnormal behavior can serve as indicator or precursor of 
crashes and critical states.  

For the first time, the use of dynamic indicators, 
precursors of crashes in stock markets using the 
parameters of a α-stable distribution, was proposed by us 
in the works [30, 31] and later repeated in a recent work 
[32]. Moreover, the authors [32], analyzing only one 
crisis of 2008 and using a limited set of stock market 
indices (only three), conclude that the β parameter is an 
even more convincing indicator of the approaching 
crisis. Our data for a large set of critical events and 
crashes, as well as stock indices of countries of different 
levels of development convincingly speak in favor of the 
α parameter. 

Interesting are the conclusions that follow from the 
analysis of Table 1. Indeed, the indexes of stock markets, 
ordered by the value of the α parameter, reveal a 
characteristic pattern that large α parameters correspond 
to more advanced stock markets of developed countries. 
At the same time, the β asymmetry parameter also differs 
markedly from zero. For emerging and emerging 
markets, the α parameter is noticeably smaller, and the β 
parameter tends to zero. 

In our opinion, this indicates that crises in emerging 
markets occur more often, are more profound and long 
lasting. This leads to a decrease in the α parameter (see 
Fig. 3a, c) and leveling of the distribution asymmetry, 
with the result that the β tends to zero. 

6. Conclusions  
Recently, there has been an increasing of interest in the 
study of quantitative methods for the stability of 
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financial objects, especially in crisis situations. It is 
extremely important to take precisely preventive 
measures to prevent significant financial losses.  

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 3. The corresponding time series and estimated for them 
parameters α (a, c) and β (b, d). Vertical arrows indicate 
crashes and critical events. 

In this respect, an important role is played by the 
methods of constructing indicators of crisis phenomena, 
which warn in advance of a possible approaching crisis, 
that makes them as indicators-precursors of possible 
crisis states. 

Crises manifest themselves in the form of strong 
price fluctuations of most assets and financial market 
instruments. In particular, stock market indexes exhibit 
increased volatility, which is reflected through the 
appearance of long tails in non-Gaussian probability 
density functions. 

This paper has examined the behaviors of stock 
markets price fluctuations. As many others results, our 
research have demonstrated that the fluctuation 
distribution of DJIA index over the long period of 1900-
2019 are characterized by heavy tails and can be 
described by the Levy’s stable parameters. A similar 
pattern is observed for other stock indices taken over the 
shorter period from 2000 to 2019. Relating on theoretical 
background of Levy’s stable distribution, stock markets 
time series and normalized log-returns for stock index 
price, it have been obtained that the Gaussian 
distribution for stock market is less suitable than Levy’s 
stable distribution.  

Further, we have discussed different method for the 
parameters estimation of the distribution, and pointed out 
which method is the best. Calculated parameters (α, β) 
have presented a similar behavior for different crisis 
states and proved that they can be used as indicators of 
crashes and critical periods. Moreover, it is shown that 
the absolute values of the distribution parameters 
themselves characterize the degree of development and 
efficiency of the stock market itself.  
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