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Abstract. The article substantiates the necessity to develop training methods of 
computer simulation of neural networks in the spreadsheet environment. The sys-
tematic review of their application to simulating artificial neural networks is per-
formed. The authors distinguish basic approaches to solving the problem of net-
work computer simulation training in the spreadsheet environment, joint appli-
cation of spreadsheets and tools of neural network simulation, application of 
third-party add-ins to spreadsheets, development of macros using the embedded 
languages of spreadsheets; use of standard spreadsheet add-ins for non-linear op-
timization, creation of neural networks in the spreadsheet environment without 
add-ins and macros. After analyzing a collection of writings of 1890-1950, the 
research determines the role of the scientific journal “Bulletin of Mathematical 
Biophysics”, its founder Nicolas Rashevsky and the scientific community around 
the journal in creating and developing models and methods of computational neu-
roscience. There are identified psychophysical basics of creating neural net-
works, mathematical foundations of neural computing and methods of neuroen-
gineering (image recognition, in particular). The role of Walter Pitts in combining 
the descriptive and quantitative theories of training is discussed. It is shown that 
to acquire neural simulation competences in the spreadsheet environment, one 
should master the models based on the historical and genetic approach. It is indi-
cated that there are three groups of models, which are promising in terms of de-
veloping corresponding methods – the continuous two-factor model of Rashev-
sky, the discrete model of McCulloch and Pitts, and the discrete-continuous mod-
els of Householder and Landahl. 

Keywords: computer simulation, neural networks, spreadsheets, neural compu-
ting, neuroengineering, computational neuroscience. 



1 Introduction 

For the past 25 years, the authors have been developing the concept of systematic com-
puter simulation training at schools and teachers’ training universities [53]. The concept 
ideas have been generalized and presented in the textbook [60]. Spreadsheets are cho-
sen to be the leading environment for computer simulation training [52; 71], their ap-
plication discussed in articles [55; 62; 66; 68]. Using spreadsheet processors (autono-
mous [18], integrated [61] and cloud-oriented [72]) as examples, the authors demon-
strate components of teaching technology of computer simulation [70] of determined 
and stochastic [56; 58; 67] objects and processes of various nature [59; 69]. 

The systematic training of simulation provides for changing [52] and integrating [57] 
simulation environments ranging from general (spreadsheets) to specialized subject-
based ones. While teaching computer simulation of intellectual systems [50] special-
ized languages and programming environments [28] are traditionally used. They can be 
easily mastered by first-year students [1; 27]. One of the most wide-spread languages, 
Scheme, is offered to be applied to teaching computer simulation of classical mechanics 
at universities [54]. Extensive application of artificial intelligence in everyday life calls 
for students’ early acquaintance with its models and methods including neural network-
based [29] while teaching informatics at secondary schools. It conditions the need for 
developing training methods of computer simulation of neural networks in the general-
purpose simulation environment, i.e. spreadsheets. 

2 Literature Review and Problem Statement 

The first description of spreadsheet application to teaching neural network simulation 
of visual phenomena dates back to 1985 and belongs to Thomas T. Hewett, Professor 
of the Department of Psychology of Drexel University [11]. In [10] there are described 
simple models of microelectrode recording of two neuron types of neural activity – 
receptors and transmitters localized in two brain-hemispheres. Thomas T. Hewett of-
fered psychology students to independently choose coefficients of intensifying or re-
ducing input impulses to achieve the desired output: “... the simulations can be designed 
in such a way that the student is able to "experiment" with a simulation-experiment 
both in the sense of discovering the characteristics of an unknown model and in the 
sense of modifying various components of a known model to see how the simulation is 
affected” [10, p. 343]. This approach implies simultaneous studying a neural network 
and understanding its functioning as psychology students conclude the laws of the neu-
ral impulse spread by applying the trial-and-error method. 

In his article [4], James J. Buergermeister, Professor of Hospitality and Tourism 
Management of University Wisconsin-Stout, associates electronic spreadsheet applica-
tion with basic principles of training technology and methods of data processing 
(Fig. 1). The author does not work out the methods of applying electronic spreadsheets 
to neural network simulation in detail, yet, the presented scheme reveals such basic 
steps as data obtainment, semantic coding, matching with an etalon, etc. 



 

Fig. 1. The information-processing model using spreadsheet events (according to [4]) 

Since 1988, Murray A. Ruggiero, one of the pioneers of autotrading, has been develop-
ing Braincel, an application for Microsoft Excel 2.1C, which is a set of twenty macros 
to solve tasks of image recognition by artificial neural network tools [21]. At the be-
ginning of 1991, Murray A. Ruggiero received a patent “Embedding neural networks 
into spreadsheet applications” [49], which describes an artificial neural network with a 
plurality of processing elements called neurons arranged in layers. They further include 
interconnections between the units of successive layers. A network has an input layer, 
an output layer, and one or more “hidden” layers in between, necessary to allow solu-
tions of non-linear problems. Each unit (in some ways analogous to a biological neuron: 
dendrites – input layer, axon – output layer, synapses – weights [47], soma – summation 



function) is capable of generating an output signal which is determined by the weighted 
sum of input signals it receives and an activation function specific to that unit. A unit 
is provided with inputs, either from outside the network or from other units, and uses 
these to compute a linear or non-linear output. The unit’s output goes either to other 
units in subsequent layers or to outside the network. The input signals to each unit are 
weighted by factors derived in a learning process. 

When the weight and activation function factors have been set to correct levels, a 
complex stimulus pattern at the input layer successively propagates between the hidden 
layers, to result in a simpler output pattern. The network is “taught” by feeding it a 
succession of input patterns and corresponding expected output patterns. The network 
“learns” by measuring the difference at each output unit between the expected output 
pattern and the pattern that it just produced. Having done this, the internal weights and 
activation functions are modified by a learning algorithm to provide an output pattern 
which most closely approximates the expected output pattern, while minimizing the 
error over the spectrum of input patterns. Neural network learning is an iterative process 
involving multiple lessons. Neural networks have the ability to process information in 
the presence of noisy or incomplete data and yet still generalize to the correct solution. 

In his patent, Murray A. Ruggiero details a network structure (multi-level), an acti-
vation function (sigmoidal), a coding method (polar), etc. He presents a mathematical 
apparatus for network training and determines a method of data exchange between a 
spreadsheet processor nucleus and an add-in to it. The patent author suggests storing 
input data in columns, maximum and minimum values for each column of input data, 
the number of learning patterns. Data can be normalized or reduced to the polar range 
[0; 1] both in spreadsheets and add-ins. 

In his article of 1989, Paul J. Werbos, the pioneer of the backpropagation method 
for artificial neural network training [65] demonstrates how to make the corresponding 
mathematical apparatus simpler to use it directly in the spreadsheet processor. The cy-
cling character of training is supported by a macro that exchanges data between lines 
to avoid restrictions on the number of iterations because of the limited number of lines 
on a sheet of a separate spreadsheet. Some other authors suggest applying a similar 
approach of macros application [8; 74]. 

The authors of [22] in Chapter 2 “Neural Nets in Excel” give an example of applying 
the non-linear optimization tool, Microsoft Excel Solver, to forecasting stock prices 
using the “grey-box” concept, in which the model is evident, yet, the details of its real-
ization are hidden. 

In their article of 1998 [9], Tarek Hegazy and Amr Ayed from the Department of 
Civil Engineering at University of Waterloo distinguish the corresponding seven steps 
(Fig. 2). Unlike [48], the authors suggest using bipolar data normalization (over the 
range of [–1; 1]) and a hyperbolic tangent as an activation function. Three add-ins for 
Microsoft Excel are used to determine weighting factors – the standard Solver and 
third-party add-ins (NeuroShell2 and GeneHunter by Ward Systems Group). Experi-
ment results reveal that the best result is provided by the optimizing general-purpose 
tool (Solver) and not by specialized ones. In spite of the fact that “Journal of Construc-
tion Engineering and Management” does not refer to educational editions, the article 



[9] and the paper [3] by their structure and focus on details can be considered the first 
description of methodic of using spreadsheets for neural network simulation. 

 

Fig. 2. Spreadsheet simulation of three-layer neural network with one output node (according 
to [9]) 

In their article of 2012 [47], Thomas F. Rienzo and Kuriakose K. Athappilly from Ha-
worth College of Business at Western Michigan University consider model illustrating 
the process of machine learning as networks examine training data would provide an-
other. Authors incorporate the stepwise learning processes of artificial neural network 
in a spreadsheet containing (1) a list or table of training data for binary input combina-
tions, (2) rules for target outputs, (3) initial weight factors, (4) threshold values, (5) 
differences between target outputs and neural network transformation values, (6) learn-
ing rate factors, and (7) weight adjustment calculations. Unlike the previous ones, this 
model is invariant to the spreadsheet and does not call for applying any third-party add-
ins. 

The conducted review makes it possible to find the following solutions of the prob-
lem of computer simulation teaching to neural networks in the spreadsheet environ-
ment: 

─ joint application of spreadsheets and neural network tools [29], in which data is ex-
ported to the unit calculating weighting factors imported to spreadsheets and used in 
calculations; 



─ application of third-party add-ins for spreadsheets ([9; 21; 37; 49]), according to 
which structured spreadsheet data is processed in the add-in, calculation results are 
arranged in spreadsheet cells; 

─ macros development ([3; 8; 65; 74]) enables direct software control over neural net-
work training and creation of a user’s specialized interface; 

─ application of standard add-ins for optimization ([9; 22; 37]) calls for transparent 
network realization and determination of an optimization criterion (minimization of 
a squared deviation total of the calculated and etalon outputs of the network); 

─ creation of neural networks in the spreadsheet environment without add-ins and mac-
ros [47] requires transparent realization of a neural network with evident determina-
tion of each step of adjustment of its weighting factors. 

The advantage of the first solution is its flexibility as one can choose any relevant com-
binations of the simulation environments, yet, their integration level is usually insuffi-
cient. The closed character of the second solution and its binding to a certain software 
platform make it relevant to be applied to solving various practical tasks and irrelevant 
for neural network simulation training as a network becomes a black box for a user. 
The fourth solution is partially platform-dependent as a neural network becomes a grey 
box for a user. The final solution is totally mobile and offers an opportunity to regard 
the model as a white box, thus making it the most relevant for initial mastering of neural 
network simulation methods. 

3 The Aim and Objectives of the Study 

The research is aimed at considering mathematical models of neural networks realized 
in spreadsheet environment. 

To accomplish the set goal, the following tasks are to be solved: 

1. to distinguish learning tools of computer simulation of neural networks in the spread-
sheet environment; 

2. to study mathematical models of neural networks at the beginning of the Age of 
Camelot [7]. 

4 Mathematical models of neural networks at the 

beginning of the Age of Camelot (1933-1947) 

Russell C. Eberhart and Roy W. Dobbins [7] suggest dividing the history of artificial 
network development into four stages. The first stage, the Age of Camelot, starts with 
“The Principles of Psychology” (1890) by the American psychologist, William James, 
who formulates the elementary law of association: “When two elementary brain pro-
cesses have been active together or in immediate succession, one of them, on re-occur-
ring, tends to propagate its excitement into the other” [20, p. 566]. The elementary law 
of association (the elementary principle) is closely related to the concepts of associative 
memory and correlational learning. In the authors’ opinion [7], William James seemed 



to foretell the notion of a neuron’s activity being a function of the sum of its inputs, 
with past correlation history contributing to the weight of interconnections: “The 
amount of activity at any given point in the brain-cortex is the sum of the tendencies of 
all other points to discharge into it, such tendencies being proportionate (1) to the num-
ber of times the excitement of each other point may have accompanied that of the point 
in question; (2) to the intensity of such excitements; and (3) to the absence of any rival 
point functionally disconnected with the first point, into which the discharges might be 
diverted” [20, p. 567]. 

William James illustrates his elementary principle by total recall example: “Suppose, 
for example, we begin by thinking of a certain dinner-party. The only thing which all 
the components of the dinner-party could combine to recall would be the first concrete 
occurrence which ensued upon it. All the details of this occurrence could in turn only 
combine to awaken the next following occurrence, and so on. If a, b, c, d, e, for instance, 
be the elementary nerve-tracts excited by the last act of the dinner-party, call this act A, 
and l, m, n, o, p be those of walking home through the frosty night, which we may call 
B, then the thought of A must awaken that of B, because a, b, c, d, e, will each and all 
discharge into l through the paths by which their original discharge took place. Simi-
larly they will discharge into m, n, o, and p; and these latter tracts will also each rein-
force the other’s action because, in the experience B, they have already vibrated in 
unison. The lines in ... [Fig. 3] symbolize the summation of discharges into each of the 
components of B, and the consequent strength of the combination of influences by 
which B in its totality is awakened.” [20, p. 569]. 

 

Fig. 3. Thinking acts according to William James [20, p. 570] 



Fig. 3 reveals the neural network depicting connection between two conditions. Apply-
ing the elementary principle to analyzing forgetting and recall, William James creates 
an associative neural network (Fig. 4): “The whole process can be rudely symbolized 
in a diagram. Call the forgotten thing Z, the first facts with which we felt it was related 
a, b, and c, and the details finally operative in calling it up, l, m, and n. Each circle will 
then stand for the brain-process principally concerned in the thought of the fact lettered 
within it. The activity in Z will at first be a mere tension; but as the activities in a, b, 
and c little by little irradiate into l, m, and n, and as all these processes are somehow 
connected with Z, their combined irradiations upon Z, represented by the centripetal 
arrows, succeed in rousing Z also to full activity. ... Turn now to the case of finding the 
unknown means to a distinctly conceived end. The end here stands in the place of a, b, 
c, in the diagram. It is the starting-point of the irradiations of suggestion; and here, as 
in that case, what the voluntary attention does is only to dismiss some of the suggestions 
as irrelevant, and hold fast to others which are felt to be more pertinent – let these be 
symbolized by l, m, n. These latter at last accumulate sufficiently to discharge all to-
gether into Z, the excitement of which process is, in the mental sphere, equivalent to 
the solution of our problem. The only difference between this case and the last, is that 
in this one there need be no original sub-excitement in Z, cooperating from the very 
first. When we seek a forgotten name, we must suppose the name’s centre to be in a 
state of active tension from the very outset, because of that peculiar feeling of recogni-
tion which we get at the moment of recall.” [20, pp. 586-588]. 

 

Fig. 4. The recall process according to William James [20, p. 586] 

In “Psychology” (1892), an abridged re-edition of “The Principles of Psychology”, Wil-
liam James formulates basic principles of the image recognition theory: “We know, in 
short, a lot about it, whilst as yet we have no acquaintance with it. Our perception that 
one of the objects which turn up is, at last, our qucesitum, is due to our recognition that 
its relations are identical with those we had in mind, and this may be a rather slow act 
of judgment. Every one knows that an object may be for some time present to his mind 



before its relations to other matters are perceived. Just so the relations may be there 
before the object is.” [19, p. 275]. 

“The Bulletin of Mathematical Biophysics” has been an advanced platform for ap-
probating network models and methods since the moment of its foundation by Nicolas 
Rashevsky in 1939 [6]. It should be no surprise as Nicolas Rashevsky invented one of 
the first models of the neuron [44] and started the idea of artificial neural networks. The 
basic idea was to use a pair of linear differential equations and a nonlinear threshold 
operator (1): 
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where θ is the threshold, e and j could represent excitation and inhibition or the amount 
or concentration of two substances within a neuron, H(x) is the Heaviside operator 
(takes positive values to 1, and non-positive values to 0). This gives an easy way to 
model the all-or-none firing of a neuron – Nicolas Rashevsky showed that this simple 
model was able to model many of the known experimental results for the behavior of 
single neurons. He also made the point that networks of these model neurons could be 
connected to give quite complicated behavior and even serve as a model for a brain [6]. 

In his article of 1941, Gale J. Young (“the best theoretical engineer” of Manhattan 
Project [64]) [73], shows that the Nicolas Rashevsky two-factor model of nerve excita-
tion can account for sustained inhibition or enhancement by a sequence of stimulus 
pulses, and for the decrease in the reinforcement period with each successive pulse of 
the train. 

Developing Nicolas Rashevsky’s ideas, his student Alston Scott Householder, who 
gave his name to the known linear transformation describing a reflection about a plane 
or hyperplane containing the origin, and a class of root-finding algorithms used for 
functions of one real variable with continuous derivatives up to some order, in his arti-
cle of 1940 [13], suggests a parameter measuring the “strength” of the inhibitory neu-
rons acting among the terminal synapses. In [16], he describes the activity parameter as 
a characteristic of the fiber which is assumed to be different from zero, but it may be 
either positive (when the fiber is excitatory in character) or negative (when the fiber is 
inhibitory in character). In Householder’s articles of 1941–1942: 

─ Preliminary consideration is given to the steady-state activity of some simple neural 
structures. It is assumed as a first approximation that while acted upon by a constant 
stimulus, each fiber reaches a steady-state activity whose intensity is a linear func-
tion of the applied stimulus. It is shown by way of example that for a simple two-
fiber circuit of inhibitory neurons knowledge of the stimuli applied to the separate 
fibers does not necessarily suffice to determine uniquely the activity that will result. 
On the other hand, there are deduced certain restrictions on the possible types of 
activity that may be consistent with a given pattern of applied stimulation [16]. 



─ It is found that for a simple circuit of neurons, if this contains an odd number of 
inhibitory fibers, or none at all, or if the product of the activity parameters is less 
than unity, then the stimulus pattern always determines uniquely the steady-state 
activity. For circuits not of one of these types, it is possible to classify exclusively 
and exhaustively all possible activity patterns into three types, here called “odd”, 
“even”, and “mixed”. For any pattern of odd type and any pattern of even type there 
always exists a stimulus pattern consistent with both, but in no other way can such 
an association of activity patterns be made [17]. 

─ It is shown here that when the product of the activity parameters of the neural circuit 
is not exceeded by unity (algebraically) a steady state is not possible in which all 
fibers of the circuit are active, whereas when this product is exceeded by unity, any 
stimulus pattern which is consistent with such a state of complete activity is incon-
sistent with any state of partial activity of the circuit [14]. 

─ Conditions under which either of two distinct activity patterns may arise from the 
same stimulus pattern are deduced for the case of a network which consists of N 
simple circuits all jointed at a common synapse. If the product of the activity param-
eters of all the fibers in any circuit is called the activity parameter of the circuit, or, 
more briefly, the circuit parameter, then the condition for the existence of such mu-
tually consistent activity patterns is that there be a sum of circuit parameters which 
is not less than unity [15]. 

Thus, at the beginning of 1942, the theory of biological neural networks based on Ni-
colas Rashevsky’s continuous two-factor model was created and intensively developed. 
As remembered by J. A. Anderson and E. Rosenfeld, at the boundary of two decades, 
Walter Pitts was introduced to Nicolas Rashevsky by Rudolf Carnap, and accepted in 
to his mathematical biology group [5]. In his early publication, Walter Pitts suggests “a 
new point of view in the theory of neuron networks is here adumbrated in its relation 
to the simple circuit: it is shown how these methods enable us to extend considerably 
and unify previous results for this case in a much simpler way” [33, p. 121]. With due 
consideration of Householder’s articles, Walter Pitts determines the total conduction 
time of a fiber as the sum of its conduction time and the synaptic delay at the postlimi-
nary synapse. Walter Pitts was the first to use spreadsheet abstraction and discrete de-
scription of neural network functioning by determining a corresponding algorithm: 
“The excitation-pattern of [neural circuit] C may be described in a matrix E, of n rows 
and an infinite number of columns, each of whose elements ers represents the excitation 
at the synapse sr during the interval (s, s+1). The successive entries in the excitation 
matrix E may be computed recursively from those in its first column – these are the 
quantities λr – by the following rule, whose validity is evident: Given the elements of 
the p-th column, compute those of the p+l-st thus: if the element eip is negative or zero, 
place σi+l in the i+l-st row and p+1-st column, or in the first row of the p+l-st column if 
i=n. Otherwise put σi+l+aieip, in this place. We shall say that C is in a steady-state during 
a series of n intervals (s, s+1), ..., (s+n–1, s+n) if, for every p between s and s+n, the p-
th and p+n-th columns of E are identical. If s is the smallest integer for which this is 
the case, we shall say that the steady state begins at the interval (s, s+1)” [33, pp. 121–
122]. Rather than analyzing the steady-state activity of networks, Walter Pitts was more 



concerned with initial nonequilibrium cases, and how a steady state could be achieved 
[2, p. 18]. 

The suggested algorithm describes a parallel neural network: “It will be seen that the 
construction of the matrix E implies that its infinite diagonals – where we take a diag-
onal to start again at the top of the succedent column whenever it reaches the last row 
of E – are wholly independent of one another, so that if we know the starting point of a 
diagonal of Es, we can calculate the entries along it uncognizant of any other values in 
the matrix. Physically, this of course means that the activity in C can be regarded as 
composed of wholly independent impulses, commencing originally at a synapse sj with 
a value λj, and journeying around C in irrelation to the impulses beginning at other 
synapses. We shall find it convenient to adopt this standpoint, and consider only the 
case of a single impulse, so that the complete solution must be derived by combining 
the results of our subsequent procedures for the separate diagonals, and a steady-state 
for the whole circuit is attained only when one has accrued for each separate diagonal 
[33, p. 122]. 

The results provided by Walter Pitts in his articles on the linear theory of neuron 
networks (the static problem [35] and the dynamic problem [34]), enabled him to draw 
two essential conclusions: (1) it is possible to find a set of independent networks each 
of which consists of n simple circuits with one common synapse (rosettes), such that 
network arises by running chains from the centers of the rosettes to various designated 
points outside: but none back, so that the state of the whole network is determined by 
the states of the separate rosettes independently – Pitts calls networks of this kind ca-
nonical networks [34, p. 29]; (2) given any finite network, it is possible to find a set of 
independent rosettes such that the excitation function of network for every region is a 
linear combination of those of the rosettes – i. e., we can reduce any network to a ca-
nonical network having the same excitation function [34, p. 31]. Thus, in his article of 
1943, Walter Pitts solves the inverse network problem, “which is, given a preassigned 
pattern of activity over time, to construct when possible a neuron-network having this 
pattern” [34, p. 23] by allowing creating problem-oriented neural networks. Tara H. 
Abraham indicates that adopting Householder’s model of neural excitation, Walter Pitts 
develops a simpler procedure for the mathematical analysis of excitatory and inhibitory 
activity in a simple neuron circuit, and aimed to develop a model applicable to the most 
general neural network possible [2]. 

“Psychometrika”, the official journal of the Psychometric Society (both founded in 
1935 by Louis Leon Thurstone, Edward Lee Thorndike and Joy Paul Guilford), is de-
voted to the development of psychology as a quantitative rational science. It has become 
another mouthpiece of Nicolas Rashevsky and his students, whose articles examine 
statistical methods, discuss mathematical techniques, and advance theory for evaluating 
behavioral data in psychology, education, and the social and behavioral sciences gen-
erally. Walter Pitts’s article “A general theory of learning and conditioning” has been 
published in this journal. “The field of conditioning and learning has attained a devel-
opment on the purely experimental side which renders it an excellent point for the entry 
of quantitative theory into psychology... The work of this kind done so far has been 
chiefly from two standpoints: the first ... attempts with some success to explain the 
phenomena directly upon a neurological basis, while the second ... prefers to elaborate 



first a macroscopic account of behavior per se, while leaving the neurological founda-
tions until a later stage. These two approaches are of course rather complementary than 
competitive: the development of theoretical neurology provides very many suggestions 
for macroscopic work, and the latter simplifies the neurological problem by requiring 
mechanisms to account for only a few general propositions instead of a multitude of 
facts in no obvious relation. ... We shall consider the results of our discussion applicable 
to all aspects of learning and conditioning in which the effect of symbolic or verbal 
factors is not of great significance; and within this field we shall deal with all eases of 
learning and conditioning in which independent or related stimuli, with given original 
tendencies to produce specified types of response, are distributed over time in specified 
intensities in an arbitrary way, continuous or otherwise; and in which affective stimu-
lation, if this form part of the experimental routine, is distributed in any given manner. 
In partial confirmation of our hypotheses, we shall point out how most of the principal 
experimental generalizations can be inferred from the theory, at least as regards com-
parative order of magnitude; while a rigid quantitative test would require data in a detail 
not ordinarily given in experimental results. The theory does not seem too difficult to 
verify in most of its aspects, however, by a fairly extended and precise set of experi-
ments, whose performance would also provide direct information upon a number of 
matters of considerable import upon which little data are available, and which, even if 
disconfirming our present system in some of its aspects, would assuredly make sugges-
tions leading to a better one of comparable range and generality.” [31, pp. 1-3] 

Part I [31] deals only with the case where the stimuli and responses are wholly inde-
pendent, so that transfer and generalization do not occur, and proposes a law of varia-
tion for the reaction-tendency, which takes into account all of classical conditioning 
and the various sorts of inhibition affecting it. Part II [32] extends a mathematical the-
ory of non-symbolic learning and conditioning, still under the hypothesis of complete 
independence, to cases where reward and punishment are involved as motivating fac-
tors. The preceding results are generalized to the case where stimuli and responses are 
related psychophysically, thus constituting a theory of transfer, generalization, and dis-
crimination. 

Another article of 1943, “A logical calculus of the ideas immanent in nervous activ-
ity” [26], published again in “Bulletin of Mathematical Biophysics”, has resulted from 
cooperation of Warren Sturgis McCulloch and Walter Pitts and is considered one of the 
most famous papers on artificial neural networks. They stated five physical assumptions 
for nets without circles [26, p. 118]: 

1. The activity of the neuron is an “all-or-none” process [any nerve has a finite thresh-
old and the intensity of excitation must exceed this for production of excitation – 
once produced, the excitation proceeds independently of the intensity of the stimu-
lus]. 

2. A certain fixed number of synapses must be excited within the period of latent addi-
tion [time during which the neuron is able to detect the values present on its inputs, 
the synapses – typically less than 0.25 msec] in order to excite a neuron at any time, 
and this number is independent of previous activity and position on the neuron. 



3. The only significant delay within the nervous system is synaptic delay [time delay 
between sensing inputs and acting on them by transmitting an outgoing pulse, – typ-
ically less than 0.5 msec]. 

4. The activity of any inhibitory synapse absolutely prevents excitation of the neuron 
at that time. 

5. The structure of the net does not change with time. 

The neuron described by these five assumptions is known as the McCulloch-Pitts neu-
ron [7, p. 17]. In the same way as propositions in propositional logic can be “true” or 
“false,” neurons can be “on” or “off” – they either fire or they do not: this formal equiv-
alence allowed them to argue that the relations among propositions can correspond to 
the relations among neurons, and that neuronal activity can be represented as a propo-
sition [2, p. 19]. “In this way all nets may be regarded as built out of the fundamental 
elements of Figures a, b, c, d, precisely as the temporal propositional expressions are 
generated out of the operations of precession, disjunction, conjunction, and conjoined 
negation. In particular, corresponding to any description of state, or distribution of the 
values true and false for the actions of all the neurons of a net save that which makes 
them all false, a single neuron is constructible whose firing is a necessary and sufficient 
condition for the validity of that description. Moreover, there is always an indefinite 
number of topologically different nets realizing any temporal propositional expression” 
[26, p. 121]. 

Fig. 5 reveals fundamental elements of McCulloch-Pitts neural networks. The trian-
gle depicts the neuron body, figures in the triangles are neuron numbers, lines are axons, 
dots adjacent to neurons are excitatory synaptic connections, open circles adjacent to 
the neuron are inhibitory synaptic connections. In author’s expressions for the figures, 
the dots on either side of the “≡” symbol act as separators, ≡ act as biconditional logical 
connectives (logical equivalence), single dots act as conjunction (logical AND),  act 
as disjunction (logical OR), and  act as negation (logical NOT). 

In Fig. 5(a), neuron 2 will fire if and only if neuron 1 fires. Logically, this corre-
sponds to the expression N2(t)  N1(t–1), which can be read as “neuron 2 will fire at 
time (t) if and only if neuron 1 fires at time (t–1)”. Fig. 5(b) shows a network that is 
isomorphic with the Boolean function “OR” in propositional logic. Its expression, 
N3(t)  N1(t–1)  N2(t–1) means that neuron 3 will fire at time (t) if and only if neuron 
1 fires or neuron 2 fires at time (t–1). Fig. 5(c) demonstrates the Boolean “AND” func-
tion. The expression N3(t)  N1(t–1)  N2(t–1) means that neuron 3 will fire at time (t) 
if and only if neuron 1 fires at time (t–1) and neuron 2 fires at time (t–1). Warren Sturgis 
McCulloch and Walter Pitts don’t provided an example of the ‘clean’ Boolean “NOT” 
function – instead it they use a conjoined negation with the instance of an inhibitory 
neuron. The logical expression N3(t)  N1(t–1)  N2(t–1) corresponding to Fig. 5(d), 
means that neuron 3 will fire at time (t) only if neuron 1 fires at time (t–1) and neuron 
2 does not fire at time (t–1). 

In [26], there is a set of theorems that “does in fact provide a very convenient and 
workable procedure for constructing nervous nets to order, for those cases where there 
is no reference to events indefinitely far in the past in the specification of the condi-
tions” [26, pp. 121–122]. Warren Sturgis McCulloch and Walter Pitts appear to be the 



first authors since William James to describe a massively parallel neural model. The 
theories they developed were important for a number of reasons, including the fact that 
any finite logical expression can be realized by networks of their neurons. 

 

Fig. 5. Fundamental elements of McCulloch-Pitts neural networks 

Combining simple “logical” neurons in chains and cycles, the authors show that the 
brain is able to perform any logical operation and arbitrary logical calculations. The 
paper is essential for developing computing machines as it allows creating a universal 
computer operating with logical expressions (in the hands of John von Neumann, the 
McCulloch-Pitts model becomes the basis for the logical design of digital computers 
[6, p. 180]): “It is easily shown: first, that every net, if furnished with a tape, scanners 
connected to afferents, and suitable efferents to perform the necessary motor-opera-
tions, can compute only such numbers as can a Turing machine; second, that each of 
the latter numbers can be computed by such a net; and that nets with circles can be 
computed by such a net; and that nets with circles can compute, without scanners and 
a tape, some of the numbers the machine can, but no others, and not all of them. This 
is of interest as affording a psychological justification of the Turing definition of com-
putability and its equivalents, Church’s λ-definability and Kleene’s primitive recursive-
ness: If any number can be computed by an organism, it is computable by these defini-
tions, and conversely.” [26, pp. 121–122] 



In the same issue of “Bulletin of Mathematical Biophysics”, in which [26] was pub-
lished, Herbert Daniel Landahl (the first doctoral student in Nicolas Rashevsky’s math-
ematical biology program at the University of Chicago, who became the second Presi-
dent of the Society for Mathematical Biology in 1981), Warren Sturgis McCulloch and 
Walter Pitts published a short (about 3 pages), yet essential addition [23], suggesting a 
method for converting logical relations among the actions of neurons in a net into sta-
tistical relations among the frequencies of their impulses. In the presented theorem, they 
detailed transition from Boolean calculations (in “true” and “false”) to probabilistic 
ones (numbers within [0; 1]): the conjunction sign  is replaced by +, the disjunction 
sign (single dot) is replaced by , negation  is replaced by «1 –», etc. The correspond-
ence expressed by this theorem connects the logical calculus of the [26] with previous 
treatments of the activity of nervous nets in mathematical biophysics and with quanti-
tatively measurable psychological phenomena. 

The monograph by Alston Scott Householder and Herbert Daniel Landahl “Mathe-
matical Biophysics of the Central Nervous System” has become a kind of conclusion 
of the discussed period [12]. In Paul Cull’s opinion, there is no unambiguous answer to 
the question which model is better, the Rashevsky continuous model or the McCulloch-
Pitts discrete model: “For some purposes, one model is better, but for other purposes, 
the other model is better. Rashevsky and Landahl were quick to notice, that in physics, 
one often averaged over a large set of discrete events to obtain a continuous model 
which represented the large scale behavior of a system, and so they posited that the 
continuous neuron model might be suitable for modeling whole masses of neurons even 
if each individual neuron obeyed a discrete model. In the hands of Householder and 
Landahl, this observation led to the idea of modeling psychological phenomena by neu-
ral nets with a small number of continuous model neurons. In particular, they found 
that the cross-couple connection [Fig. 6] was extremely useful. For such problems as 
reaction time, enhancement effects, flicker phenomena, apparent motion, discrimina-
tion and recognition, they were able to fit these models to experimental data and to use 
their models to predict phenomena that could be measured and verified” [6, p. 180]. 

 

Fig. 6. This cross-couple connection of four neurons is capable of modeling a large number of 
phenomena (according to [6]) 

In 1945, Nicolas Rashevsky wrote about [26] and [23]: “authors show that by applying 
logical calculus, it is possible to construct any complicated network having given prop-
erties. One could attempt to construct by the method of McCulloch and Pitts a network 
that would represent all modes of logical reasoning, and then apply the usual methods 
of mathematical biophysics to derive some quantitative relations between different 
manifestations of the processes of logical thinking” [43, p. 146]. “It seems somewhat 



awkward to have to construct by means of Boolean algebra first a "microscopic circuit" 
and then obtain a simpler one by a transition to the "macroscopic" picture. We should 
expect that a generalization of the application of Boolean algebra should be possible so 
as to permit its use for the construction of networks in which time relations are of a 
continuous rather than of a quantized, nature” [45, p. 211]. 

Nicolas Rashevsky intensively develops the apparatus created by McCulloch and 
Pitts in his further papers. In [46] a theory of such neural circuits is developed which 
provide for formal logical thinking. As a by-product of this study, a neural mechanism 
is indicated which provides for the conception of ordinal numbers. A quantitative the-
ory of the probability of erroneous reasoning and of the speed of reasoning in its rela-
tions to other psychological phenomena is suggested. Predicate apparatus application 
enables Nicolas Rashevsky synthesizing huge neural networks from single-type funda-
mental elements of McCulloch-Pitts (Fig. 7). 

 

Fig. 7. Nicolas Rashevsky’s complex neural network example (from [46, p. 32]) 

In their paper of 1946, Herbert Daniel Landahl and Richard Runge [24] make the next 
move towards spreadsheet interpretation of neural networks: the activity of a neural net 



is represented in terms of a matrix vector equation with a normalizing operator in which 
the matrix represents only the complete structure of the net, and the normalized vector-
matrix product represents the activity of all the non-afferent neurons. 

Let a net of n neurons be divided into afferents, efferents, and internal neurons. We 
shall only mean by an afferent a neuron not acted upon by any neuron in the net under 
consideration. Similarly, an efferent is a neuron which does not act on any other neuron 
in the net. We may, however, refer to the afferents as receptors and the efferents as 
effectors. Let the ρ receptor neurons be N1, N2, ..., Nr, ..., Nρ, the ι internals be Nρ+1, ..., 
Ni, ..., Nρ+ι and the ε effector neuron be Nn–ε+1, ..., Ne, ..., Nn. Define a structure matrix 
F as a square matrix having the row and column indices 1, 2, ..., n corresponding to the 
n neurons such that 

 1 ... r ... ρ ρ+1 ... i ... ι (n–ε+1) ... e ... n  

1 0 FR FX  

F=|fjk|=   0 FI FE (2) 

n 0 0 0  

 
Each element in row j determines which neurons are acted upon by neuron Nj and in 

what manner. Similarly each element in column k determines which neurons act upon 
Nk and in what manner. The matrices FR, FX, FI, and FE, appearing in equation (2), 
determine respectively the relationships receptor-internal, receptor-effector, internal-
internal, and internal-effector. Define the matrix R as the n  n matrix, obtained from F 
by substituting zeros for all elements except those of FR. Define in a similar way the 
matrices X, I, and E. We shall assume that no neuron acts upon itself so that fkk = 0 for 
all k, and F and FI have all diagonal elements equal to zero. 

If any row α in F contains only positive or zero elements, then Nα is a purely excita-
tory neuron. If any row β in F contains only negative or zero elements, then Nβ is a 
purely inhibitory neuron. If both positive and negative elements occur in a given row, 
the corresponding neuron may be referred to as a mixed neuron.  

Define the (1  n) row matrix or vector a, by 

 a(t)=(a1, ..., ar, ..., aρ, aρ+1, ..., ai, ..., aι, an–ε+1, ..., ae, ..., an), (3) 

where any element aj is 1 or 0 depending on whether Nj does or does not act at the time 
t. The vector a(t) may be referred to as the activity vector at the time t. This vector may 
be written as the sum of three (1  n) vector components, r, i, e, the receptor, internal, 
and effector components having the respective set of elements ar, ai, and ae only, and 
zeros elsewhere. The scalar quantity ��(�) given by the sum 
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���

,																												(4) 

taken over a class β of neurons which is defined as the class of all neurons synapsing 
on Nk which are active at t–l, gives a measure of the net excitation affecting the neuron 
Nk. A vector �(�), whose components for k > ρ are the values of ��(�) and for k ≤ ρ – 
the values of ak(t), can be expressed as 

 �(�)=r(t)+a(t–1)F. (5) 

In order to normalize �(�), let � be a post-operator on a row vector, such that, if 
[��]� is the kth component of the vector [��](�), 

 [��]� = �
1	if	�� ≥ 1,
0	if	�� < 1.

 (6) 

Since � operates only on a vector appearing just to the left of it, and not on a matrix, 
the expression (��)� may be written ��� (the parenthesis could not be eliminated if a 
pre-operator were used). Equation (5) may be written 

 a(t)=�(�)�=[r(t)+a(t–1)F]�. (6) 

According to the given theorem [61, p. 78], the activity of any net represented by a 
structure matrix F is determined from the afferent stimulation and its activity at the 
beginning of the prior interval of time according to the equation 

 a(t)=r(t)+a(t–1)F�. (7) 

Equation (8) leads to the recursion formula 

 a(t)=r(t)+{r(t–1)+[r(t–2)+... + [r(2)+[r(1)+a(0)]F�]F�]... F�]F�}F�. (8) 

The vector quantity between the first and last brackets in expression (9) is simply 
the vector a(t–1). 

Thus if the structure of a net is known together with a sequence of r’s, r(0), r(1), ..., 
r(τ–1), and the initial activity of the internal neurons i(0), it is possible from equation 
(9) to determine the activities of the net for any time t from 0 to τ, a(1), a(2), ..., a(τ). 

Because of the character of the structure matrix F, equation (8) may be written as a 
pair of equations 

 i(t)=[r(t–1)R+i(t–1)I]�, (9) 

 e(t)=[r(t–1)X+i(t–1)E]�, (10) 

from which one may determine successively i(t) and e(t) for every t. For both i(t) and 
e(t) formulas similar to expression (9) can be written. 

From equation (10), it is evident that the sequence of i’s can be determined from a 
knowledge of the afferent-internal structure and internal-internal structures, together 



with the sequence of afferent activities and an initial internal activity pattern. On the 
other hand, to determine the sequence of e’s, that is, the pattern of the efferent activity, 
one must also know the rest of the structure of the net. 

Every row and column of F, excluding the first ρ columns and last ε rows, contains 
at least one non-zero entry; otherwise, it represents an afferent or efferent. If only one 
non-zero entry occurs in any column, it may be replaced by unity, for if it is less than 
one, the neuron of the corresponding column can never act, and thus this neuron should 
be deleted. Furthermore, there is no restriction to set an element equal to one, if this 
element is greater than one. 

Authors give an example of the application of the presented in [24] method – the 
matrix F for the circuit illustrated in Fig. 8. 

 

Fig. 8. Figure 1e of the paper “A logical calculus of the ideas immanent in nervous activity” 
[26] 

  1 2 a b 3 4 

 1 

0 
0 0 1 0 

 2 1 -1 0 ½ 

F= 
a 

0 
0 1 0 ½ 

b 0 0 1 0 
 3 

0 0 0 
 4 

 
If the net is initially at rest, then, according to [26], the expression for neuron 3 is 

N3(t)  N1(t-1)  N2(t–3)  N2(t–2) and the condition for the activity of neuron 3 at 
t=0, is either that neuron 2 acts at t=–3 but not at t=–2; or that neuron 1 acts at t=–1. 
That is, the sequence of r’s, writing only the ar, components, r(–3)=(0, 1), r(-2)=(0, 0), 
r(–1)=(0, 0) as well as the sequence r(–1)=(1, 0) is adequate to produce activity in neu-
ron 3. Assume that r(t)=0 for all t≥0. If r(–3)=(0, 1) then from equation (8) 
a(-2)=(0, 0; 1, –1; 0, ½)�=(0, 0; 1, 0; 0, 0), a(–1)=(0, 0; 0, 1; 0, 0), and 
a(0)=(0, 0; 0, 0; 1, 0), so that e(0), writing only the ae components is e(0)=(1, 0), that 
is, neuron 3 acts but 4 does not. Similarly if r(–1)=(1, 0) then from equation (8) 
e(0)=(1, 0). For both sequences a(1)=0. 

The expression for neuron 4 is N4(t)  N2(t–2)  N2(t–1), the condition for neuron 
4 to act as t=0 is that neuron 2 acts at t=–2 and at t=–1. If r(–2)=(0, 1) and r(–1)=(0, 1), 
then from equation (8) a(–1)=(0, 1; 1, 0; 0, 0) and a(0)=(0, 0; 1, 0; 0, 1), so that neuron 
4 acts but 3 does not. For this sequence a(1)=(0, 0; 0, 1; 0, 0) and a(2)=(0, 0; 0, 0; 1, 0) 



so that neuron 3 always acts as a unit of time after discontianuation of continuous stim-
ulation of neuron 2. 

In a paper [24] a method was given by which the efferent activity of an idealized 
neural net could be calculated from a given afferent pattern. Those results are extended 
in the next-year paper [25]: (1) conditions are given under which nets may be consid-
ered equivalent, (2) rules are given for the reduction or extension of a net to an equiva-
lent net, (3) a procedure is given for constructing a net which has the property of con-
verting each of a given set of afferent activity patterns into its corresponding prescribed 
efferent activity pattern. 

Telson Wei develops another approach to matrix representation of a neural network 
[63]. The structure of a complete or incomplete neural net is represented here by several 
matrices: the intensity matrix E, the connection matrix D, the structural matrix T, the 
diagonal inverse threshold-matrix H, and activity vector a from [24; 25]. The activity 
equation of the net follows in a general form. A chain or cycle is defined as a neural 
structure whose connection matrix is unitary. Telson Wei computes the number of sim-
ple chains by a recurrent formula. 

In their paper of 1948 [51], Alfonso Shimbel and Anatol Rapoport (pioneered in the 
modeling of parasitism and symbiosis, researching cybernetic theory) develop a prob-
abilistic approach to the theory of neural nets: neural nets are characterized by certain 
parameters which give the probability distributions of different kinds of synaptic con-
nections throughout the net. In their further papers, they consider steady states in ran-
dom nets [37; 42] and contribution to the probabilistic theory of neural nets: randomi-
zation of refractory periods and of stimulus intervals [38], facilitation and threshold 
phenomena [39], specific inhibition [40] and various models for inhibition [41]. 

The last joint article by Walter Pitts and Warren Sturgis McCulloch, “How we know 
universals the perception of auditory and visual forms”, in “Bulletin of Mathematical 
Biophysics” came out in 1947. “Numerous nets, embodied in special nervous struc-
tures, serve to classify information according to useful common characters. In vision 
they detect the equivalence of apparitions related by similarity and congruence, like 
those of a single physical thing seen from various places. In audition, they recognize 
timbre and chord, regardless of pitch. The equivalent apparitions in all cases share a 
common figure and define a group of transformations that take the equivalents into one 
another but preserve the figure invariant. So, for example, the group of translations 
removes a square appearing at one place to other places; but the figure of a square it 
leaves invariant. ... We seek general methods for designing nervous nets which recog-
nize figures in such a way as to produce the same output for every input belonging to 
the figure. We endeavor particularly to find those which fit the histology and physiol-
ogy of the actual structure.” [30, pp. 127–128] 

Two neural mechanisms are described which exhibit recognition of forms. Both are 
independent of small perturbations at synapses of excitation, threshold, and synchrony, 
and are referred to particular appropriate regions of the nervous system, thus suggesting 
experimental verification. The first mechanism averages an apparition over a group, 
and in the treatment of this mechanism it is suggested that scansion plays a significant 
part. The second mechanism reduces an apparition to a standard selected from among 



its many legitimate presentations. The former mechanism is exemplified by the recog-
nition of chords regardless of pitch and shapes regardless of size. Both are extensions 
to contemporaneous functions of the knowing of universals heretofore treated by the 
authors only with respect to sequence in time. 

“We have focused our attention on particular hypothetical mechanisms in order to 
reach explicit notions about them which guide both histological studies and experiment. 
If mistaken, they still present the possible kinds of hypothetical mechanisms and the 
general character of circuits which recognize universals, and give practical methods for 
their design. These procedures are a systematic development of the conception of re-
verberating neuronal chains, which themselves, in preserving the sequence of events 
while forgetting their time of happening, are abstracted universals of a kind. Our cir-
cuits extend the abstraction to a wide realm of properties. By systematic use of the 
principle of the exchangeability of time and space, we have enlarged the realm enor-
mously. The adaptability of our methods to unusual forms of input is matched by the 
equally unusual form of their invariant output, which will rarely resemble the thing it 
means any closer than a man’s name does his face.” [30, p. 146] 

Thus, the models and methods developed by Walter Pitts and Warren Sturgis McCul-
loch have created a foundation for designing a new type of computers – neurocomputers 
based on human brain principles and able to solve tasks of recognizing distorted (noisy) 
images. 

5 Conclusions 

1. Extensive application of artificial intelligence in everyday life calls for students’ 
early acquaintance with its models and methods including neural network-based 
while teaching informatics at secondary schools. It conditions the need for develop-
ing training methods of computer simulation of neural networks in the general-pur-
pose simulation environment, i.e. spreadsheets. 

2. Basic solutions of the problem of computer simulation training of neural networks 
in the spreadsheet environment include: 1) joint application of spreadsheets and net-
work simulation tools; 2) application of third-party add-ins to spreadsheet proces-
sors; 3) macros development using embedded languages of spreadsheet processors; 
4) application of standard spreadsheet add-ins for non-linear optimization; 5) crea-
tion of neural networks in the spreadsheet environment without add-ins and macros. 

3. Neural network simulation competences should be formed through mastering mod-
els based on the historical and genetic approach. The review of papers on computa-
tional neuroscience of its early period allows determining three groups of models, 
which are helpful for developing corresponding methods: the continuous two-factor 
model of Rashevsky, the discrete model of McCulloch and Pitts, and the discrete-
continuous models of Householder and Landahl. 

4. Further research implies considering mathematical models of the Age of Camelot 
and developing their spreadsheet interpretations of various complexity. 
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