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Abstract 

The paper deals with the development adaptive control system of the ore 
crushing process based on nonlinear block-oriented dynamic models. It is 
define that the best dynamic approximation quality according to the 
minimum coefficient of variation of the root-mean-square error and 
identification time are provided by applying a hybrid structure that 
combines the Wiener model, the Hammerstein-Wiener model and the 
Laguerre orthonormal functions. Using the recursive least squares algorithm 
for parametric identification enables to adapt the disturbances caused by 
changes in the mining mass characteristics. A nonlinear model predictive 
control system of the ore crushing process is also developed. A method of 
control formation is proposed and based on the block-oriented model static 
nonlinearities inversion. The obtained system demonstrated high dynamics 
quality and low computational load on the digital controller. 

Keywords: ORE CRUSHING PROCESS, ADAPTIVE CONTROL, 
NONLINEAR MODEL PREDICTIVE CONTROL, BLOCK-ORIENTED 
MODELS, IDENTIFICATION, SIMULATION. 

 
Introduction. The problem of the effective use of natural and 

energy resources in the context of constantly rising prices for fuel 
and electricity is a leading place in the state policy of Ukraine. In the 
production field, resource and energy capacity is inherent in the 
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technological processes of ore-enrichment plants, which include the 
ore preparation for enrichment by means of multi-stage crushing 
with subsequent grinding in the mills. In the structure of the ore 
processing cost the crushing operation share is the biggest, which is 
due to high energy costs. 

The main factors influencing the energy consumption of a mill 
include particle-size distribution of the raw materials. Taking into 
account that grinding is preceded by crushing operations, the 
increase in the efficiency of ore preparation in general can be 
achieved by obtaining as much as possible fine and smooth ore at 
this processing stage. Thus, energy costs are transferred to less 
energy intensive process. This can be achieved either by the 
complete re-equipment of technological lines or by optimizing the 
operating modes of an existing technological installation by 
developing new and improving existing methods and algorithms for 
controlling it. From the economic point of view, the advantage is 
given to the last solution. 

Existing methods and systems of automated control of the ore 
crushing process do not allow to control the particle-size distribution 
of the finished product effectively enough, therefore the development 
of adaptive control systems, which will allow to provide high 
characteristics of particle-size in conditions of fluctuations of ore 
properties, changes in the characteristic of technological equipment 
and the presence of obstacles in data transmission channels is an 
actual scientific task. For qualitative adaptive control formation, an 
adequate mathematical description of the plant must be known. 
Taking into account the nonlinearity of the ore crushing process, in 
predicting its behavior, it is advisable to use block-oriented models 
(BOM) because of a clear separation of linear and nonlinear parts. 
This feature allows to use a wide range of linear dynamic models and 
static nonlinear functions in plant modeling. 

Thus, providing a given particle-size distribution of the finished 
product with crushing ore in cone crushers by applying adaptive 
control with a predictive block-oriented structure to parametrizate the 
trajectory of control actions, which will allow with introduction into 
production to increase profits from the functioning of existing 
equipment by reducing the cost of the ore preparation product is 
currently the topical issue. 
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Analysis of literary data and problem statement. Today, in the 
theory of identification the following directions related to the 
synthesis of nonlinear system models are widely searched: models 
based on Volterra series use, nonlinear input-output models (NARX, 
NARMAX, NOE, etc.), block-oriented models (Hammerstein, 
Wiener and Hammerstein-Wiener) and fuzzy-neural network models. 

For a nonlinear Volterra system, the relationship between input 
and output can be represented in the form of an infinite series [1]. 
The disadvantage of the practical use of this type of model lies in the 
estimation of a large number of unknown characteristics with 
truncation of infinite series [2, 3]. Also, parametric identification can 
be performed using a sufficiently deep sampling [3]. However, due 
to the lack of feedback on the output Volterra model provides 
guaranteed stability. 

In contrast to Volterra nonlinear system, nonlinear input-output 
models have an output feedback that allows us to obtain a 
mathematical description of the dynamic process in a more compact 
form [3]. 

Depending on the type of operator, the following models are 
distinguished: NARX (nonlinear ARX), NARMAX (nonlinear 
ARMAX), NOE (nonlinear OE). As in the Volterra system, the 
regressors number of these models increase with rising polynomial 
orders and sampling depths. This disadvantage is especially critical 
for the NARMAX model. NARX, NARMAX and NOE models are 
sensitive to external disturbances and noise in data transmission 
channels. Also the modeling accuracy of the plant dynamics depends 
on the sampling period [4]. 

Block-oriented nonlinear models (BOM) are conventionally 
divided into nonlinear static and linear dynamic blocks. In the 
Hammerstein model, a nonlinear static block is located in front of a 
linear dynamic part. In the Wiener model, on the contrary, the linear 
block precedes the nonlinear one. In the Hammerstein-Wiener 
model, the dynamic part of the model is between two nonlinear 
blocks. 

The complexity of the parametric identification of block-oriented 
models lies in the need to consider the interrelations between 
structural elements. Many methods and algorithms for evaluating the 
characteristics of the considered functions and models have been 
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developed and investigated [5]. However, if there is information 
about the nature of static nonlinearities, the process of developing a 
model is significantly reduced. In this case, the identification is a 
subject to an exclusively linear dynamic model. In the tasks of 
automated precise control, it is expedient to use the block-oriented 
models (BOM) in conjunction with the systems of Laguerre 
orthonormal functions (OBF) through a clear separation of linear and 
nonlinear parts [6]. 

To determine the structure of a nonlinear model that will allow to 
provide acceptable prediction of the plant reaction to change the 
controls, a comparative analysis of the approximation quality should 
be performed using three typical unified BOMs: Hammerstein, 
Wiener and Hammerstein-Wiener. In connection with the use of the 
Laguerre model to represent the linear part of these models, it is 
necessary to adapt their traditional mathematical description in the 
space of states by analogy with [7]. 

The model predictive control (MPC) method has demonstrated 
high efficiency in technological processes control. The principle of 
control is to predict the system behavior at a certain interval and 
ensure that it is best approximated to the output of the plant to the 
reference signal [8-10] by solving the optimization problem. In this 
case, the most common form of the objective function is the 
quadratic criterion. 

Taking into account the nonlinearity of the ore crushing process, 
it is expedient to consider possible ways of solving the predictive 
control problem, provided that the predictive model is also nonlinear 
(NMPC). A simpler method is linearization of the nonlinear model 
around the operating point [11] and the application of linear 
predictive control (MPC) methods. However, the qualitative 
characteristics of such controller significantly deteriorate at 
significant deviations from the nominal operation conditions, which 
is explained by the inability of the linearized model to describe the 
global behavior of the nonlinear system. 

NMPC control is a form of nonlinear programming problem, so 
methods of sequential quadratic programming or internal point [12] 
can be used to find the optimal trajectory of control actions. 
However, as a result, we see the increase of the computing load on 
the controller and the system's performance at computing in real 
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time. This is due to the more complex iterative procedure of finding 
a solution to the problem of nonlinear programming, in comparison 
with the linear one. 

The third method is based on the application of the static 
nonlinearity inversion method [11], which is convenient to use with 
block-oriented systems because of the independence of linear and 
nonlinear block models. At the same time, formulating the task of 
predictive control, the replacement of the source coordinates, control 
actions and signals of the task by intermediate reciprocal variables is 
carried out. Then, to determine the control vector, algorithms of 
linear or quadratic programming are used, depending on the absence 
or presence of restrictions on the input-output variables. However, 
the use of nonlinear compensators can lead to quasi-optimal and 
often sub-optimal solutions of the modified predictive control task. 

The key task in model predictive control is to determine the future 
control steps, that is, the sequence of amplitudes of control action or 
its increments. Given the high sampling frequency and the long 
horizons of prediction, the number of elements of the vector of 
controls that need to be determined may be sufficiently significant, 
which reduces the time of finding the optimal solution, due to the 
large computational load [13]. 

The research [14] is focused on reducing the time of settlement 
operations of MPC control by reducing the controls sequence 
number degrees of freedom within the prediction horizon. In research 
[15], the computational efficiency of determining the trajectory of 
control increases due to its approximate representation of wavelet 
functions. Similarly, in researches [13, 16], the approximation of the 
control trajectory is carried out by a system of orthonormal basis 
Laguerre functions. This allows to use a unified descriptor of the 
controls sequence. As a result, after determining the structure of the 
model (its order), the number of parameters to be identified is 
significantly reduced and limited by parameters of a set of 
orthonormal functions. 

The advantage of using MPC in the conditions of the ore mining 
processes control is determined by the possibility of taking into 
account the physical and technological constraints of the process by 
imposing restrictions on the amplitude, increment of control and 
output coordinates and confirmed by researches [17, 18]. The 
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second, more general advantage is the definition of control effects in 
real time. In this case, the speed is limited only by the frequency of 
tacting modern hardware controllers and the speed of optimization 
algorithms convergence. 

The purpose of the work. The purpose of the study is to develop 
principles and structure of ore crushing process adaptive control 
system based on the predictive model, which provide the formation 
and maintenance of the specified homogeneity of the crushed 
product and the control size class output under the influence of 
uncontrolled disturbances caused by fluctuations of the ore raw 
material characteristics, changes in the parameters of technological 
equipment and errors in data transmission channels. 

Results of the development of nonlinear models of the ore 
crushing process in cone crushers and studying the quality of their 
structural and parametric identification approximating the process 
dynamics. The dynamics of the control plant can be described by a 
model constructed on the basis of orthonormal Laguerre functions, 
which is represented as follows in the state-space discrete form [6, 
16]: 
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where  21   ; ψ – a scale factor that must be within 0 1   to 

ensure system stability. 
The task of the Laguerre OBF model (1) parametric identification 

is reduced to the definition of coefficients vector C (3) components 
and the scale factor ψ. 

The modified Hammerstein model containing the static 
nonlinearity in the part describing the effect of input actions on the 
state of the state vector can be represented as follows: 
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static nonlinear functions; [ ] R nL k   - Laguerre model state vector; 

[ ] R mu k   - input vector. 
Similarly, the Wiener model is formulated: 
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where ( ) : R Rn    - static nonlinear function, which connects the 
Laguerre model state vector with the block-oriented model output. 

By combining the two previous models (4) and (5) we obtain the 
Hammerstein-Wiener model in the state-space: 
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To perform the series of computational experiments as an plant an 
improved [22] analytical model of the ore crushing process [21, 20] 
was used along the channels "rotation speed – homogeneity of the 
crushed product" and "rotational speed – control size class output". 

The calculations were carried out in the MATLAB software 
package on a PC with the following configuration: Intel Core i3-
3120M 2.5 GHz 4GB RAM Win7 x64. 

To assess the accuracy of the approximation of the crushing 
process characteristics and the model predictive control quality, the 
coefficient of variation of the root-mean-square error between the 
test and model data is used: 
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where yi – test value; ŷi – model value; n – the number of 
measurements. 
The ore crushing process model identification was carried out 
according to the structural scheme (see Fig. 1). As already mentioned 
above, the multi-zone model of a cone crusher was adopted as an 
identification plant, the adequacy of which is confirmed by studies 
[20-22]. The inputs uω[k] і uθ[k] were subjected to test samples 
corresponding to the laws of changing the rotation speed and closed 
side setting of the technological unit. Outputs were taken off the 
original values that characterize the qualitative parameters of the 
crushing process, namely the control size class output in crushed ore 
yγ[k] and the general index of its homogeneity yCV[k]. 
 

 
 

Fig. 1. Block-diagram of the ore crushing process model  
structural-parametric identification 

 
Carrying out the research, the parametric identification of the 

Laguerre model was initially carried out using adaptive algorithms: 
least-mean squares algorithm (LMS), normalized least-mean squares 
algorithm (NLMS), recursive least squares algorithm (RLS) [12-14]. 
After obtaining a mathematical description of the linear part, an 
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iterative evaluation of the parameters of static nonlinearities was 
performed. Stationary nonlinearities of BOM are approximated by 
piecewise linear functions with iterative estimation of their 
parameters by nonlinear optimization algorithms (Gauss-Newton, 
Levenberg-Marquardt and the fastest descent) at each step of the 
calculations, followed by a choice of values that minimize the 
accuracy of the modeling CV(RMSE). The results of computational 
experiments for models of regime parameters of the crushing process 
are summarized in table 1. 

The obtained data demonstrate that the best approximation of the 
process characteristics by control size class output is achieved using 
the Wiener model and the recursive algorithm for estimating the 
Laguerre OBF parameters. The accuracy of this model is 1.9% 
higher than that of nonlinear systems of the same structure, but with 
other parametric identification algorithms and 26.5 times higher than 
the linear model with the RLS algorithm [22]. 

 
Table 1  

The accuracy of block-oriented models identification with Laguerre OBF and 
adaptive parameter estimation algorithms 

 

Model 
Identification 

algorithms 

CV(RMSE), % 

Control size class 
output, % 

Coefficient of 
variations of 
size density 

function 
Hammerstein 
with Laguerre 
OBF 

LMS 20,65 11,14 
NLMS 21,03 4,19 
RLS 21,75 3,85 

Wiener with 
Laguerre OBF 

LMS 2,029 1,69 
NLMS 2,028 1,85 
RLS 1,99 3,13 

Hammerstein-
Wiener with 
Laguerre OBF 

LMS 11,67 0,62 
NLMS 19,22 0,52 
RLS 12,5 0,51 

 
Fig. 2b shows the time series of the plant and block-oriented 

models outputs that provide the minimum CV(RMSEγ). 
As you can see from the graphs, the Hammerstein-Wiener model 

with the LMS algorithm does not adequately describe the inertia of 
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the ore crushing process and has the highest error of the steady-state 
of ест γ = 3,9 % compared to other models that are given. In contrast, 
all Wiener models are acceptable to simulate the dynamics of a plant. 
The best accuracy in steady-state for the Wiener structures is 
achieved with a RLS algorithm of parametric identification 
ест γ = 0,53 %, and worst – with the NLMS algorithm ест γ = 0,64 %. 

 

 
 

Fig. 2. Time series of the plant and Wiener models outputs 
 
On the other hand, for the coefficient of variations of size density 

function, the Hammerstein-Wiener model is more accurate than the 
Wiener structure (table 1, fig. 3b). 

The maximum accuracy of simulation of the mode parameter is a 
model with a recursive algorithm for determining the linear dynamic 
part CV(RMSECV) = 0,51 %. The dynamics of the ore crushing 
process by all three Hammerstein-Wiener models is described 
adequately. The average error in steady-state is ест CV = 0,24 %, 
ест CV = 0,6 % and ест CV = 0,16 % adapting the models using the 
algorithms of the usual and normalized least squares, and the 
recursive least squares algorithm, respectively. 

Consequently, in this case, the best accuracy have a model with a 
recursive algorithm of linear block parameters estimation. This 
adaptive algorithm (so one source program in controller) can be used 
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to estimate the model parameters on other channels. This will reduce 
the controller memory load. 

Using the Wiener nonlinear structure and the LMS algorithm 
identifying the Laguerre system parameters, there is oscillation in 
dynamics and the error in steady-state is ест CV=0,59 %. 

We also note that for both parameters the worst identification 
accuracy was demonstrated by Hammerstein's models, regardless of 
the adaptive parameter estimation algorithm. In this case, the use of 
the LMS algorithm leads to deterioration in the modeling of the 
process behavior by the coefficient of variation of size density 
function 17.86%. 

 
Fig. 3. Time series of the plant and Hammerstein-Wiener models outputs 

 
We perform a comparison of the received block-oriented models 

that provide the minimum value of the approximation quality index, 
with the typical nonlinear structures used in the theory of system 
identification. Third-order Volterra, Wiener, and Hammerstein-
Wiener models have a linear part of the "output-error" structure (W-
OE, H-W-OE), as well as the nonlinear autoregressive model 
(NARX). 

Simulation of the influence of external disturbances and noise in 
data transmission channels was carried out by applying to the output 
of the plant additive interference, which is represented by a sequence 
of random variables with normal distribution. Computational 
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experiments were performed at various values of the distribution 
standard deviation σ. With each change of standard deviation, the 
structural identification of the models W-OE, H-W-OE and NARX 
was carried out by direct sampling of the parameters na, nb, nf, nk. In 
order to determine the stability of the parametric identification 
process, for each value of σ and defined sets of model parameters, 
calculations were made 30 times. The averaged CV(RMSE) values 
are summarized in table 2, 3. 

According to the obtained data (fig. 4b, table 2), the 
Hammerstein-Wiener with Laguerre (HW-RLS-Laguerre) models 
and the "output-error" structure provides the best approximation of 
the crushing process reaction by the coefficient of variation of size 
density function on the cone rotational speed changes. 
 

 
Fig. 4. Time series of the plant and nonlinear models outputs 
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In this case, the structure with the Laguerre model has 9.8% 
greater accuracy with σ = 0,005 and at 2.1%, with σ = 0.1 in relative 
terms. It should also be noted that the error of the stable mode of the 
proposed block-oriented system is only ест CV = 0,18 %. For 
comparison, in W-OE and H-W-OE models with "output-error" 
structure, this value is ест CV = 2,17 % and ест CV = 2,26 %, 
respectively. 

The worst quality of simulation was shown by NARX. The spread 
of values of the variation coefficient of the root-mean-square error 
with a consistent increase σ shows the instability of the process 
parameters estimating. The polynomial structure inadequately 
reflects the inertia of the ore crushing process and, in general, the 
behavior of the plant in steady-state. 

 
Table 2  

The accuracy of nonlinear models identification of the process of fragmentation 
by the coefficient of variation of the grain size characteristic 

 

Standard 
deviation 

σ, % 

CV(RMSE), % 
H-W-
RLS-

Laguerre 
W-OE H-W-OE NARX Volterra 

0,005 1,02 2,17 1,12 9,75 9,23 
0,01 1,27 2,39 1,54 8,73 9,29 

0,025 2,97 3,64 3,15 14,4 9,72 
0,05 5,89 6,34 6,11 17,37 11,07 

0,075 8,85 9,18 9,25 22,5 12,94 
0,1 11,84 12,1 12,09 20,05 15,22 

 
The average deviation of the output of this model in a 

steady0state relative to the output of the plant without additive 
disturbance is ест CV = 17,9 %, that is the worst among considered 
nonlinear structures. Unlike NARX, the 3rd order Volterra system 
has a better accuracy of steady-state description. The error of the 
steady-state is, at the same time interval ест CV = 0,013 %. However, 
in the simulation of the transition process, such system loses 
stability. As a result, for its, the coefficient of variation of the root-
mean-square error is quite high. At the same time, it changes by only 
5.99% in the range of standard deviations of additive disturbance
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 R | 0,005 0,1    . For comparison, with the increase of σ from 

0.005 to 0.1, the accuracy of the Hammerstein-Wiener model with 
Laguerre OBF drops by 10.82%. At the same time, all the BOMs, 
regardless of the type of linear model, are quite stable. 

A comparative analysis of the modeling results of the behavior of 
the ore crushing process by the control size class output (table 3, 
fig. 4c) shows that the best overall accuracy of the Wiener structure 
with Laguerre OBF (W-RLS-Laguerre). Its accuracy is higher by 
3,02% at σ = 0,05 and 11,98% at σ = 1 than in the W-OE structure, 
which also showed a fairly high quality of approximation, especially 
with slight disturbances. 

The Wiener model with Laguerre OBF best describes the steady-
state process ест γ = 0,61 % of the three block-oriented structures. For 
comparison, the steady-state errors of the W-OE and HW-OE 
systems make up ест γ = 1,39 % and ест γ = 1,64 %, respectively. It 
should be noted that the W-OE system is unstable. At the same time, 
CV(RMSE) increases by a maximum of 2.67%, so loss of stability 
can be considered as not significant. 

 
Table 3 

The accuracy for identification of nonlinear models of the splitting process  
for the partial execution of the size class –9.1+6.7 mm 

 
Standard 
deviation 

σ, % 

CV(RMSE), % 
W-RLS-
Laguerre 

W-OE H-W-OE NARX Volterra 

0,05 2,07 5,09 10,17 13,2 15,1 
0,075 2,12 5,29 12,84 14,9 15,15 
0,1 2,19 5,51 10,07 39,14 15,17 
0,25 2,93 5,46 10,95 28,18 15,28 
0,5 4,7 19,73 21,8 23,9 15,81 
0,75 6,72 18,53 21,1 30,25 16,58 

1 8,81 20,79 22,91 32,5 17,64 

 
As with the simulation of the variation coefficient of the size 

density function, the impossibility of practical application of the 
NARX model proves low quality of identification (accuracy and 
stability). The 3rd order Volterra system demonstrated the best 
modeling accuracy of the ore crushing process in steady-state. The 
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steady-state error is only ест γ = 0,012 %. However, as before, it 
remains unstable in dynamics. The coefficient of variation of the 
root-mean-square error of the Volterra system increases by only 
2.54% in the range of mean-square deviations of the additive 
disturbances  R | 0,05 1    . Under the same conditions, the 

general accuracy of the Wiener modeling with the Laguerre linear 
model increases by 6.74%. 

Thus, as a result of the research, it was found that the best quality 
of the ore crushing process dynamics modeling has a hybrid block-
oriented structure consisting of Hammerstein-Wiener and Wiener 
models, in which an orthonormal basis Laguerre functions system is 
used as a linear block (see fig. 5). 

In addition to analyzing the quality of the ore crushing process 
simulation an investigation of the identification speed was 
additionally performed. Due to the high convergence rate of the 
adaptive RLS algorithm for identifying the Laguerre model, the total 
time of evaluating the characteristics of block-oriented structures on 
its basis was significantly lower than in standard nonlinear systems. 

 

 
 

Fig. 5. Hybrid block-oriented model of ore crushing process 
 
However, due to the determination of the parameters of static 

nonlinearities through the sequential use of three algorithms for 
nonlinear programming at one step, the total time of identification of 
the hybrid model was 153 milliseconds, which exceeds the system 
sampling period. Therefore, to reduce the identification time only the 
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Gauss-Newton algorithm was used, which reduced the time to 42.7 
milliseconds without significant loss of accuracy. 

Task formalization of multidimensional predictive control of ore 
crushing process based on hybrid block-oriented model 

Given the nonlinearity of the hybrid model in the formation of 
controls, it is necessary to use methods and algorithms for nonlinear 
programming (NMPC), which, firstly, are complex in 
implementation and require significant memory resources of 
controller, and, secondly, have low performance through its iterative 
character [24]. Therefore, it is advisable to explore the possibility of 
using an alternative model predictive control method based on 
finding the block-oriented models static nonlinearities inverse 
functions. 

In general, the solution of the model prediction control problem is 
to determine the trajectory of the controls, which minimizes the 
quadratic criterion of the form: 
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Applying a block-oriented model: 
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output functions; U – vector of input actions 

 [ ] [ 1] [ 1]
T

cU u k u k u k N    ; Û  – control trajectory 

 ˆ ˆ ˆ ˆ[ ] [ 1] [ 1]
T

cU u k u k u k N        ; Ŷ – vector of predicted 

output values ˆ ˆ ˆ ˆ[ 1 | ] [ 2 | ] [ | ]
T

pY y k k y k k y k N k      ; R – 

reference signal [ 1 | ] [ 1 | ] [ | ]
T

pR r k k r k k r k N k      ; Ŷmin, 

Ŷmax, Ûmin, Ûmax – constraints on output and control amplitudes. 
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Inversion of the hybrid model static nonlinear input-output 
functions allows us to reduce the problem (8) and (9) to the quadratic 
programming problem in the following form [11]: 

 
   

     

* * * * * * * *

* 1 * 1 * 1

ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ; ; ,

T
TJ R Y Q R Y U S U

R R Y Y U U  

     

     
  (10) 

Subject to: 

 
   

   

* * * *
min max

* * * *
min max

ˆ ˆ ˆ ˆ| |1 1 ;

ˆ ˆ ˆ ˆ| |1 ,

n
c

n
p

U U U U k k N

Y Y Y Y k k N

       

      

R N

R N
 (11) 

where Q*, S* – matrix of input-output factors weight; Ξ-1(ꞏ), ϒ-1(ꞏ) – 
inverse nonlinearities of the input-output; *Û  – inverted control 

trajectory * * * *ˆ ˆ ˆ ˆ[ ] [ 1] [ 1]
T

cU u k u k u k N          ; Ŷ* – 

inverted vector of predicted output values of the block-oriented 

model * * * *ˆ ˆ ˆ ˆ[ 1| ] [ 2 | ] [ | ]
T

pY y k k y k k y k N k      ; R* – 

reference on prediction horizon 
* * * *[ 1| ] [ 2 | ] [ | ]

T

pR r k k r k k r k N k      . 

In order to find the inverse functions, it is proposed to use the 
ZEROIN algorithm tested in [25, 26]. 

It should also be noted that the computing load of a digital 
controller is influenced by the length of the prediction Np and the 
control Nc horizons, which determine the size of the system matrices 
and the number of control trajectory elements to be evaluated. It is 
proposed to investigate the appropriateness of the Laguerre OBF 
control trajectory approximation to reduce the number of parameters 
to be estimated. 

Taking into account the considerations discussed above, a block-
diagram of the ore crushing process control system was compiled 
with the predictive model presented in fig. 6. 

It consists of three main units: the control plant – a cone crusher, 
a hybrid predictive model and a controller. The structure of the 
predictive model includes two pairs of Wiener and Hammerstein-
Wiener systems. 
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Fig. 6. Block-diagram of the crushing process model predictive control system 
 
Note that the static nonlinearities at the output of the model ϒ1 

and ϒ2 have a combined form. This is due to the fact that in the 
multidimensional system the output signals of the linear models 
L11(z), L21(z) і L12(z), L22(z) are added either before or after the 
nonlinear block and the number of values of the combination during 
the inverting is directed to infinity, that is, it can be argued that the 
inverse function does not exist. The features of the identification 
process of the combined nonlinearities of block-oriented models and 
their subsequent inverting are considered in [27, 28]. The controller 
consists of blocks of inverse nonlinear functions Ξ1

-1, Ξ2
-1, ϒ1

-1, ϒ2
-1, 
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as well as a block that minimizes the criterion by one of the quadratic 
programming methods. 

On the input of a closed system signals are given for control size 
class output and the coefficient of variation of the size density 
function rγ[k], rCV[k], the matrix of weight coefficients Q, S, the 
constraints on the controls amplitude Umin, Umax, the order p and the 
scale factor ψ of Laguerre model, which approximates the control 
trajectory. 

The symbol "*" denotes the scalar and vector inverse values of 
the corresponding actions. The totally thick line is indicated by 
vector signals. 

Simulating the MIMO adaptive control system of the ore 
crushing process based on a hybrid block-oriented predictive 

model 

To evaluate the efficiency of the ore crushing process model 
predictive control system which using inverse nonlinear functions 
and Laguerre OBF parameterizing the control vector (the iLMPC 
system), we perform a series of computational experiments. In order 
to carry out a comparative analysis of the dynamics quality and the 
computational load, we additionally perform the simulation of the 
predictive controller operation with the nonlinear sequential 
quadratic programming algorithm for identifying control trajectory 
elements (NMPC). The length of the prediction trajectory Np, the 
number of controls Nc and the weight coefficients matrices values Q, 
S are assumed to be the same for both systems. 

The simulation was performed for 1000 samples with sampling 
interval Δt = 0.5 с. So, the experimental time lapse was 
 500| 0t t  R  seconds. The reference signals were submitted to 

the input of both systems, and change according to the same law. The 
reference signal by the variation coefficient of size density function 
rCV in the beginning of the calculation increases to 0.7, and then in 
90 seconds – to 1.2. Next, the value of rCV is reduced to 0.8 on 190 
seconds and to 0.4 on 290. The reference for a control size class 
output rγ after the start of the experiment steps from 0 to 9% and then 
to 15% and 18% at 140 and 240 seconds respectively. Then in 340 
seconds signal is reduced to 11%. 
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The controllers are configured as follows. The prediction horizon 
for Np is 20 counts. The matrixes of input-output weights were 
chosen arbitrarily with the following values: for the coefficient of 
variation QCV = 600, for the control size class output Qγ = 300, for 
the input of the cone rotational speed Sω=0,01 and for entering the 
closed side setting Sθ=0.01. The NMPC system has a 10-point 
control horizon. The amplitudes of the control vectors first 
components are imposed by the constraints of  | 6 12   R  

revolution per second and  | 8 13   R  mm. 

In the real cone crusher the induction motor is used to rotate the 
cone. It is expedient to adjust the speed by influencing the supply 
voltage frequency. To simulate the dynamics of the executing 
mechanism along the channel "voltage frequency–rotation speed" we 
use the linearized model of the induction motor [30]: 

 

 

 0

0

1
;

;

2
,

c

e

d
M M

dt J
dM

T
dt

f

p



  




 


  






  (12) 

where max 0 max2M s   – mechanical stiffness module; 0 max1eT s  
– the equivalent electromagnetic time constant of the stator and rotor 
circuits; f – voltage frequency; p – the number of poles pairs; M – 
engine torque; Мс – static torque; Mmax – critical torque; smax – 
critical slip; ω – motor speed; ω0 – synchronous motor speed; J – 
moment of inertia. 

The CH880 EEF cone crusher has motor with nominal 
parameters: P = 600 kW, ω0 = 78.5 rad/s, η = 0.935, cosφ = 0.85, 
J = 1600ꞏ10–2 kgꞏm2, p = 4, λmax = 2. According to the motor, the 
missing model parameters are calculated: smax = 0.049; β = 8125 
Нꞏmꞏs; Te = 0.262 s. 
The closed side setting dynamics can be approximated by the 
nonlinearity of the type "limiting the speed of the signal change". 
The analysis of the obtained experimental data shows that the level 
of speed restriction with signal growth is 0.1047 mm/s, with decrease 
–0.6059 mm/s. 
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Perform the research of controller qualitative characteristics 
exposing the plant of external uncontrolled disturbances. We will 
perform the models for two disturbances: high-frequency 
interference with low amplitude that is characteristic of channels for 
transmitting data from sensors to a control device and low frequency 
with high amplitude due to fluctuations in granulometric and 
physical-mechanical properties of the mountain mass. To model the 
first action we use a sequence of random numbers that change on 
each step in the normal distribution with the mean square deviations 
σCV1 = 0.01 and σCV2 = 0.05 for the coefficient of variation of size 
density function σγ1 = 0.1 % and σγ2 = 0.5 % for the control size class 
output –9.1+6.7 mm. The simulation of low frequency oscillations 
will also be accomplished by using a sequence of random numbers 
with mean square deviations σCV2 = 0.2 and σγ2 = 2.2 %, varying at 
each 60th samples. The results of modeling the work of predictive 
controllers are presented in fig. 7 and in table 4. 

Starting up in the considerated systems the dynamics quality 
decreases with the control size class output in comparison with the 
system without interference. In the iLMPC system appears overshoot 
δCV = 12.7%, and the NMPC increases the settling time with less 
overshoot (δγ = 10.2%). On the other hand, while controlling the 
homogeneity, the qualitative characteristics of the iLMPC and 
NMPC systems do not significantly deteriorate. Overall, the 
CV(RMSE) for the systems under consideration was: iLMPC for 
CV12.1%, for γ 7.9%, NMPC for CV 16.5%, for γ 9.3%. 

 
Table 4 

Control errors during operation of various predictive controllers 
 

Predictive 
controller 

Control error, % Computational time, ms 

Disturbance 
σCV = 0,01 і 
σγ = 0,1 % 

Disturbance 
σCV = 0,05 і 
σγ = 0,5 % 

Disturbance 
σCV = 0,01 і 
σγ = 0,1 % 

Disturbance 
σCV = 0,05 і 
σγ = 0,5 % 

iLMPC 0,31 0,87 1,14 1,19 

NMPC 2,53 3,48 168,34 195,16 
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We note that the speed of the iLMPC controller does not 
significantly change compared to the undisturbed system and 
averaged 1.19 milliseconds, while the computational speed of the 
NMPC system is reduced to 195.16 milliseconds that is on 15.9%. 

Thus, it can be stated that the model predictive controller with the 
inversion of static nonlinearities and the approximation of the 
Laguerre OBF paths has the best dynamics qualitative 
characteristics, in particular, the speed, accuracy and computational 
load compared to the usual nonlinear model predictive controller. 
Taking into account the time of the adaptive parameters 
identification of the hybrid predictive model, the total calculation 
time is 43.84 milliseconds, which is much less than the sampling 
interval. 

 
Fig. 7. Time series of the ore crushing process adaptive MPC control system  

with disturbances (σCV = 0,05 and σγ = 0,5 %) 
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This feature allows you to carry out the entire computer cycle in 
the interval between obtaining data on the current value of the 
operational process parameters of drainage from the corresponding 
sensors and ADC. Consequently, the proposed control system can be 
used in real conditions of ore preparation at ore mining and 
processing plants. 

Conclusions. Thus, the conducted studies confirm the 
appropriateness of the use of block-oriented structures, which 
include Laguerre OBF, in the tasks of design and practical 
implementation of automated high-accuracy controllers. The high 
level of reconstruction of the technological object output signal 
allows the use of these nonlinear models in the real conditions of 
mining and concentrating production, where the plant is affected by 
uncontrolled disturbances caused by fluctuations of technological 
parameters, properties of iron ore raw materials, obstacles in data 
transmission channels and so on. 

The method of model predictive control formation of the ore 
crushing process is proposed, which is based on inverting the static 
nonlinearities of the input-output of the block-oriented model and 
approximating the control trajectories by orthonormal basis Laguerre 
functions. This approach allows us to reduce the predictive control 
problem to the quadratic programming problem, and thus reduce the 
time of computational operations. 

A comparative analysis of the control quality and performance of 
the system implementing the proposed method, with the system of 
nonlinear model predictive control, was conducted. It is established 
that with the same settings of comparable controllers and identical 
disturbances, the developed system allows to provide 12.5% and 
11.9% less overshoot by the coefficient of variation of size density 
function and control size class output, at 6.3 and 14.7 seconds, the 
shorter settling time under the corresponding regime parameters and 
in 164 times (1.19 milliseconds) the lower time of control forming. It 
should be noted that the proposed control system has a lower steady-
state error. 

Further research will be devoted to the practical implementation 
of the proposed adaptive control system for the ore crushing  
process. 
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