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ABSTRACT 

The informational (Kolmogorov) measure of complexity in accordance with the Lempel-Ziv algorithm (LZC) 

is calculated for the logarithmic returns of daily Bitcoin/$ values. The calculations were carried out for a 

moving window with a variation in its size (50-250 days) in increments of one day in the framework of the 

implemented coarse graining procedure. It is shown that in both mono-and multi-scaling versions, LZC is 

sensitive to noticeable fluctuations in the Bitcoin price that occur as a result of critical events in the 

cryptocurrency market. In equilibrium, stable state, having a relatively low value, LZC rapidly increases 

immediately before the crisis, which proves the dominance of the chaotic component of the time series. The 

classification and periodization of crisis phenomena in the cryptocurrency market for the period 2010-2020 

has been carried out. The results demonstrate the possibility of using the LZC measure as an indicator-

precursor of crisis phenomena in the cryptocurrency market.  

Keywords: information theory, time series, returns, complex systems, Kolmogorov complexity, entropy, 

Lempel-Ziv complexity, cryptocurrency, Bitcoin, crisis

1. INTRODUCTION 

Signals coming from the real world often have very 

complex dynamics or arise as a result of the self-organized 

dynamics of multidimensional systems. We can find many 

examples from various fields. In physiology, we can 

mention the processes in the electrical propagation of the 

heart, which provides electrocardiograms (ECG), or the 

dynamics underlying epileptic electroencephalograms 

(EEG) [1, 2]. Financial or social systems are also 

illustrative examples of how “complexity” emerges in 

these systems [3, 4, 5]. In this case, an important problem 

arises, consisting in the ability to extract relevant 

information from these complex time series [6, 7, 8]. A 

quantitative assessment of the complexity in the various 

types and nature of time-series signals was studied using 

various methods, especially those from (1) information, (2) 

dynamical system or (3) complex networks theory.  

The idea of the first approach is to measure the spread of 

the statistical distribution underlying the data, identify 

changes in this distribution, analyze the spectral content of 

signals, etc. Among commonly used toolboxes information 

theory occupies a special place [9, 10, 11]. The second 

approach is well suited for signals of deterministic origin, 

usually non-linear. The tools used come from the world of 

chaos, such as fractal measurements, Lyapunov exponents, 

among many others [6, 12], or from the concept of 

complexity in the Kolmogorov sense (for example, 

Lempel-Ziv complexity) [13, 14, 15] Recently it was 

proposed analyze time series using the “complexity-

entropy plane”, demonstrating that the joint use of two 

quantities gives more detailed information about the series 

than each measure separately [16].  

Lempel-Ziv complexity (LZC) is a classical measure that, 

for ergodic sources, relates the concepts of complexity (in 

the Kolmogorov-Chaitin sense), and entropy rate [17, 18]. 

For an ergodic dynamical process, the amount of new 

information gained per unit of time (entropy rate) can be 

estimated by measuring the capacity of this source to 

generate new patterns. Because of the simplicity of the 

LZC method, the entropy rate can be estimated from a 

single discrete sequence of measurements with a low 

computational cost [19]. 

Methods of the complex networks theory [20] proceed 

from the possibility of representing the time series in the 

form of a graph and the subsequent analysis of the spectral 

and topological properties of the latter from the standpoint 

of complexity theory [21]  

In the conditions of volatile, environmentally dependent 

financial markets, it is important to take measures of 

complexity that allow the early stages to identify critical 

phenomena that manifest themselves in the form of crises 

and that cause significant damage to the global and 

country economies [21-24].  

In this paper, we show that the LZC measure can be just 

such a measure of complexity, which is an early precursor 

of crisis phenomena in the cryptocurrency market. 
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1.1. Analysis of Previous Studies 

Historically, the first LZC measure system studies for 
financial time series were conducted by S. Da Silva et. al. 
[23-27]. They considered the deviation of LZC from that 
value for a random time series as a measure of an actual 
market efficiency in absolute [23-26] or relative [27] 
terms. Using this approach authors were able to detect 
decreases in efficiency rates of the major stocks listed on 
the Sao Paulo Stock Exchange in the aftermath of the 2008 
financial crisis [26].  
In [28] authors have surveyed the principal applications of 
algorithmic (Kolmogorov) complexity to the problem of 
financial price motions and showed the relevance of the 
algorithmic framework to structure tracking in finance. 
Some empirical results are also provided to illustrate the 
power of the proposed estimators to take into account 
patterns in stock returns.  
In paper [29] was proposed a generic methodology to 
estimate the Kolmogorov complexity of financial returns. 
Examples are given with simulated data that illustrate the 
advantages of our algorithmic method: among others, 
some regularities that cannot be detected with statistical 
methods can be revealed by compression tools. Applying 
compression algorithms to daily returns of the Dow Jones 
Industrial Average, the authors concluded on an extremely 
high Kolmogorov complexity and by doing so, proposed 
another empirical observation supporting the impossibility 
to outperform the market.  
In [30], the structural complexity of time series describing 
returts on New York’s and Warsaw’s stock exchanges was 
studied using two estimates of the Shannon entropy rate 
based on the Lepel-Ziv and Context Tree Weighting 
algorithms. Such structural complexity of the time series 
can be used as a measure of the internal (modelless) 
predictability of the main pricing processes, and testing the 
hypothesis of an effective market.  
Somewhat surprisingly, the results of [31], in which the 
authors computed the Lempel–Ziv complexity from two 
composite stock indices, the Shanghai stock exchange 
composite index (SSE) and the Dow Jones industrial 
average (DJIA), for both low-frequency (daily) and high-
frequency (minute-to-minute) stock index data. The 
calculation results indicate that that the US market is 
basically fully random and consistent with efficient market 
hypothesis (EMH), irrespective of whether low- or high-
frequency stock index data are used. The Chinese market 
is also largely consistent with the EMH when low-
frequency data are used. However, a completely different 
picture emerges when the high-frequency stock index data 
are used. 
H. Cao and Y. Li [32] present a novel method for 
measuring the complexity of a time series by unraveling a 
chaotic attractor modeled on complex networks. The 
complexity index, which can potentially be exploited for 
prediction, has a similar meaning to the Lempel–Ziv 
complexity, and is an appropriate measure of a series’ 
complexity. The proposed method is used to research the 

complexity of the world’s major capital markets. The 
almost absent sensitivity of the LZC to fluctuations in the 
time series indicates most likely errors in the calculation 
algorithm during the transformation of the time series.  
The complexity–entropy causality plane is employed in 
order to explore disorder and complexity in the space of 
cryptocurrencies [33]. They are found to exist on distinct 
planar locations in the representation space, ranging from 
structured to stochastic-like behavior 
Crashes and critical events that took place on this market 
as well as the reasons that led to them, did not go 
unheeded. A review of the main articles and the results of 
the study of the crisis conditions of the crypto market was 
made by us in recent works [22, 34].  
A brief analysis of the problem indicates that to date, the 
Lempel-Ziv informational measure of the complexity has 
not been used to study the stability and behavior of the 
cryptocurrency market in a crisis. The aim of this work is 
an attempt to fill this gap. 

1.2. Our Contribution 

In this paper, for the first time, we use the Lempel-Ziv 
complexity measure to study the cryptocurrency market. 
Using the example of the most capitalized cryptocurrency 
- Bitcoin - we demonstrate the ability to identify dynamics 
of varying complexity. Particularly relevant is the 
identification of the characteristic behavior of Bitcoin 
during the crisis phases of market behavior. By observing 
the dynamics of the Lempel-Ziv measure, precursors of 
crisis phenomena can be constructed. 

1.3. Paper Structure 

The rest of the paper is organized as follows. Section 2 
presents the basic concepts of informational (Kolmogorov) 
complexity, the implementation of the Lempel-Ziv 
algorithm for time series, describes the tools for 
calculating Lempel-Ziv complexity. Section 3 presents a 
description of the database of calculations, the 
classification and periodization of crisis phenomena in the 
cryptocurrency market, and the actual results of 
calculations of mono-and multi-scaling window measures 
LZC. Finally, Section 4 concludes the paper and presents 
direction for future research. 

2. LEMPEL-ZIV COMPLEXITY 

Based on the different nature of the methods laid down in 
the basis of the formation of the measure of complexity, 
they pay particular demands to the time series that serve 
the input. For example, information requires stationarity of 
input data. At the same time, they have different sensitivity 
to such characteristics as determinism, stochasticity, 
causality and correlation.  

Advances in Economics, Business and Management Research, volume 129

300



  

 

2.1. The Concept of Kolmogorov Complexity 

Let us begin with the well-known degree of complexity 
proposed by A. Kolmogorov [35]. The concept of 
Kolmogorov complexity (or, as they say, algorithmic 
entropy) emerged in the 1960s at the intersection of 
algorithm theory, information theory, and probability 
theory. A. Kolmogorov's idea was to measure the amount 
of information contained in individual finite objects (rather 
than random variables, as in the Shannon theory of 
information). It turned out to be possible (though only to a 
limited extent). A. Kolmogorov proposed to measure the 
amount of information in finite objects using algorithm 
theory, defining the complexity of an object as the 
minimum length of the program that generates that object. 
This definition is the basis of algorithmic information 
theory as well as algorithmic probability theory: an object 
is considered random if its complexity is close to 
maximum.  
What is the Kolmogorov complexity and how to measure 
it? In practice, we often encounter programs that compress 
files (to save space in the archive). The most common are 
called zip, gzip, compress, rar, arj and others. Applying 
such program to some file (with text, data, program), we 
get its compressed version (which is usually shorter than 
the original file). After that, you can restore the original 
file using the paired program "decompressor". Therefore, 
in the first approximation, the Kolmogorov complexity of 
a file can be described as the length of its compressed 
version. Thus, a file that has a regular structure and is well 
compressed has a small Kolmogorov complexity 
(compared to its length). On the contrary, a badly 
compressed file has a complexity close to its length. 
Suppose we have a fixed method of description 
(decompressor)  . For this word  we consider all its 
descriptions, i.e. all words  for which  it is defined 
and equal . The length of the shortest of them is called 
the Kolmogorov complexity of the word  in this way of 
description :  

,  

where  denotes the length of the word. The index  
emphasizes that the definition depends on the choice of 
method . It can be shown that there are optimal 
methods of description. The better the description method, 
the shorter it is. Therefore, it is natural to make the 
following definition: the method  is no worse than the 
method , if  for some  and all 

. 
Thus, according to Kolmogorov, the complexity of an 
object (for example, text is a sequence of characters) is the 
length of the minimum program that outputs the text, and 
entropy is the complexity that is divided by the length of 
the text. Unfortunately, this definition is purely 
speculative. There is no reliable way to uniquely identify 

this program. But there are algorithms that are actually just 
trying to calculate the Kolmogorov complexity of text and 
entropy.  

2.1. Kolmogorov Complexity Estimation 
According to the Lempel-Ziv Algorithm 

A universal (in the sense of applicability to different 
language systems) measure of complexity of the finite 
character sequence was suggested by Lampel and Ziv [28]. 
As part of their approach, the complexity of a sequence is 
estimated by the number of steps in the process that gives 
rise to it. Acceptable (editorial) operations are: 
a) character generation (required at least for the synthesis 
of alphabet elements) and 
b) copying the "finished" fragment from the prehistory (i.e. 
from the already synthesized part of the text). 
Let be  a complete alphabet,  - text (a sequence of 
characters) composed of elements ;  - -th text 
symbol;  - a snippet of text from the -th to -th 

character inclusive ( );  - length of text . 
Then the sequence synthesis scheme can be represented as 
a concatenation  

 
where  is the fragment  generated at the 

-th step, and  is the number of process steps. 
Of all the schemes of generation is chosen the minimum 
number of steps. Thus, the Lempel-Ziv complexity of the 
sequence  is  

  

The minimum number of steps is provided by the choice to 
copy at each step the longest prototype from the 
prehistory. If you mark by the position number  from 
which the copying begins in step , the length of the copy 
fragment  

 
and the -th component of these complex decomposition 
can be written in the form  

 

The case  corresponds to a situation where a 
symbol is in the position  that has not previously 
been encountered. In doing so, we use a character 
generation operation.  
Complex text analysis can be performed in two regime - 
segmentation and fragmentation. The first regime is 
discussed above. It gives an integrated view of the 
structure of the sequence as a whole and reduces it to 
disjoint but interconnected segments (without spaces). The 
other regime is to search for individual fragments 
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characterized by an abnormally low complexity, that is, a 
sufficiently high degree of structure. Such fragments are 
detected by calculating local complexity within variable 
length windows that slide along a sequence. Curves of 
change of local complexity along a sequence are called 
complex profiles. A set of profiles for different window 
sizes reveals the boundaries of anomalous fragments and 
their relationship.  
We will find the Lempel-Ziv complexity for the time 
series, which is, for example, the daily values of the 
cryptocurrency price . To investigate the dynamics of 
LZC and compare it with cryptocurrency price, we will 
find this measure of complexity for a fixed length 
(window) contract. To do this, we calculate the 
logarithmic returns  and turn them into a sequence 
of bits. The returns over some time scale  is defined as 
the forward changes in the logarithm of :  

 (1) 
Since different cryptocurrencies have different levels of 
variability (standard deviations), we will determine 
standardized returns  

, (2) 

where  is the standard deviation , 

and  denotes the average over the time period under 
study.  

You can specify the number of states that are 
differentiated (calculus system). Yes, for two different 
states we have 0, 1, for three - 0,1,2, etc. In the case of 
three states, unlike the binary coding system, a certain 
threshold  is set and the states  are coded as follows 
[24-26]: 

. (3) 

The algorithm performs two operations: (1) adds a new bit 
to an already existing sequence; (2) copies the already 
formed sequence. Algorithmic complexity is the number 
of such operations required to form a given sequence.  
For a random sequence of lengths , the algorithmic 
complexity is calculated by expression 

. Then the relative algorithmic 
complexity is the ratio of the obtained complexity to the 
complexity of the random sequence .  
Obviously, the classic indicators of algorithmic 
complexity are unacceptable and lead to erroneous 
conclusions. To overcome such difficulties, multiscale 
methods are used. 
The idea of this group of methods includes two 
consecutive procedures: 1) coarse graining (“granulation”) 
of the initial time series – the averaging of data on non-

intersecting segments, the size of which (the window of 
averaging) increased by one when switching to the next 
largest scale; 2) computing at each of the scales a definite 
(still mono scale) complexity indicator. The process of 
“rough splitting” consists in the averaging of series 
sequences in a series of non-intersecting windows, and the 
size of which – increases in the transition from scale to 
scale [34]. Each element of the “granular” time series is in 
accordance with the expression:  

 (4) 

where  characterizes the scale factor. The length of each 
“granular” row depends on the size of the window and is 
even . For a scale equal to 1, the “granular” series is 
exactly identical to the original one.  
The coarse graining procedure for scales 2 and 3 is shown 
in Figure 1. 

 

Figure 1 Coarse-graining procedure diagram: (a) scale 
factor τ=2; (b) scale factor τ=3. 

To find the LZC measure of the time series, sliding time 
windows were considered; the index for every window 
was calculated and then the average was obtained.  

3. DATA AND ANALYSIS 

At the moment, there are various research works on what 
crises are and how to classify such interruptions in the 
market of cryptocurrencies. Taking into account the 
experience of previous researchers, we have created our 
classification of such leaps and falls [22], relying on 
Bitcoin time series during the entire period (16.07.2010 – 
31.12.2019) of verifiable fixed daily values of the Bitcoin 
price (https://finance.yahoo.com/cryptocurrencies). The 
author's version of the cryptocurrency crisis periodization 
is shown in Table. 
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Table List of Bitcoin major crises since June 2011 

№ Name 
Days 

in 
correction 

Bitcoin 
High 

Price, $ 

Bitcoin 
Low 

Price, $ 

Decline, 
% 

Decline, 
$ 

1 07.06.2011- 10.06.2011 4 29.60 14.65 50 15.05 
2 15.01.2012- 16.02.2012 33 7.00 4.27 39 2.73 

3 15.08.2012-18.08.2012 4 13.50 8.00 40 5.50 

4 08.04.2013-15.04.2013 8 230.00 68.36 70 161.64 

5 04.12.2013-18.12.2013 15 1237.66 540.97 56 696.69 

6 05.02.2014-25.02.2014 21 904.52 135.77 85 768.75 

7 12.11.2014-14.01.2015 64 432.02 164.91 62 267.11 

8 26.01.2015-31.01.2015 5 269.18 218.51 20 50.67 

9 09.11.2015-11.11.2015 3 380.22 304.70 20 75.52 

10 18.06.2016-21.06.2016 4 761.03 590.55 22 170.48 

11 04.01.2017-11.01.2017 8 1135.41 785.42 30 349.99 

12 03.03.2017-24.03.2017 22 1283.30 939.70 27 343.60 

13 10.06.2017-15.07.2017 36 2973.44 1914.08 36 1059.36 

14 31.08.2017-13.09.2017 13 4921.85 3243.08 34 1678.77 

15 16.12.2017-22.12.2017 7 19345.49 13664.96 29 5680.53 

16 13.11.2018-26.11.2018 13 6339.17 3784.59 40 2554.58 

17 09.07.2019-16.07.2019 7 12567.02 9423.44 25 3143.58 

18 22.09.2019-29.09.2019 7 10036.98 8065.26 20 1971.72 
 

Figure 2 shows the dynamics of the daily values of the 
MTC price for the study period, and the inset shows the 
3rd and 4th of the crises presented in the Table.   

 

Figure 2 The dynamics of the daily values of the BTC 
price. The inset shows the 3rd and 4th of the crises 
presented in the Table 

Figure 3 shows the dynamics of standardized logarithmic 
returns, and the limits of the normal distribution ( ) 
are indicated by dashed lines.  

 

Figure 3 The dynamics of standardized logarithmic 
returns of the BTC price  

Obviously, the crisis on the cryptocurrency market 
responds to noticeable fluctuations in standardized returns. 
Therefore, it is logical to choose  as the value for the 
threshold value  in (3).  
Figure 4 shows the dependence of the LZC on the scale. 
The absence of LZC fluctuations at scales exceeding 40 3s±

s
b
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allows us to confine ourselves to this magnitude of the 
scale when calculating the multiscale measure. 

  

Figure 4 Scale-dependent measure LZC 

For a scale interval of 1–40, the dynamics of the multiscale 
measure LZC is shown in Figure 5. 

 

Figure 5 Time dependence of a scale-dependent 
measure LZC 

Calculations of measures of complexity were carried out 
both for the entire time series, and for a fragment of the 
time series localizing the crisis. In the latter case, 
fragments of time series of the same length with fixed 
points of the onset of crisis events were selected and the 
results of calculations of complexity measures were 
compared to verify the universality of the indicators. 
Comparing the dynamics of the BTC time series and the 
corresponding LZC measures, we can judge the 
characteristic changes in the dynamics of the behavior of 

complexity with changes in the cryptocurrency. If this or 
that measure of complexity behaves in a definite way for 
all periods of crises, for example, decreases or increases 
during the pre-crisis period, then it can serve as an 
indicator or precursor of such a crisis phenomenon.  
Figure 6 presents the results of calculations of mono-
( ) and multiscaling ( ) LZC measures. 
Arrows indicate crises documented by the above Table. 
The calculations were performed for a sliding window of 
100 days in increments of 1 day. 

 

Figure 6 Comparative dynamics of BTC price 
fluctuations and mono- and multi-scaling LZC 
measures. The arrows indicate the periods of the onset 
of crises in accordance with their numbers in the Table. 

The data in Fig. 6 indicate that the LZC measure, both in 
the case of mono-scale ( ) and averaged over the scales 
from 1 to 40 ( ) for all eighteen detected crises (see 
Table) in the immediate vicinity of the crisis point, is 
noticeably reduced.  
As the results of calculations showed, the choice of the 
size of a moving window is important: in the case of large 
windows, points of crises of different times can fall into 
the window, distorting the influence of each of the crises. 
When choosing small windows, the results fluctuate 
greatly, which makes it difficult to determine the actual 
point of the crisis. The used window size of a length of 
100 days turned out to be optimal from the point of view 
of separation of crises and fixing the LZC measure as an 
indicator.  
Since the LZC measure begins to decrease even before the 
actual crisis point, it can be called an indicator-predictor of 
crisis phenomena in the cryptocurrency market. 
 
 
 
 

4. CONCLUSION 

Complexity theory and its use for the classification of 
complex dynamic systems, the study of critical 
phenomena, the prevention and prediction of crisis 
phenomena are of significant scientific and applied 
interest. Information measures of complexity due to their 

initial validity and transparency, ease of implementation 
and interpretation of the results occupy a prominent place 
among the tools for the quantitative analysis of complex 
systems.  
The Lempel-Ziv complexity measure was previously used 
to quantify the complexity of financial assets. In this 
paper, it was first used: (a) for the cryptocurrency market, 
(b) in the mono and multiscale versions, and (c) for the 

1mLZC 40mLZC

1m

40m
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construction of an indicator-precursor of crisis phenomena 
in the cryptocurrency market.  
Obviously, in the future we should expect improved 
forecasts on the way of combining the Lempel-Ziv 
measure with other constructs, for example, various 
entropy, recurrence, irreversibility measures, and others 
that comprehensively reflect many facets of the 
complexity phenomenon. 
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