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Abstract. The article studies stability of intervening pillars at underground 
selective mining of complex structured ore bodies of Kryvyi Rih iron ore 
basin applying open stope systems that will enable the increased useful 
mineral component content in the mined ore mass. When calculating an 
exposure span, the current methods of determining room system constructive 
elements do not consider dirt thickness. So, it is essential to develop methods 
of determining room system constructive elements for mining complex 
structured ore bodies to provide stability of stope exposures. When mining a 
mine block, stoping is suggested to be fulfilled gradually from the footwall to 
the hanging wall of the ore body by room-and-pillar methods leaving a dirt or 
ore inclusion in the block. This enables decrease in concentrating tension and 
compression stresses in the middle part of the dirt or ore inclusion resulting 
in its 1.5 – 2.0 times greater stability. There is also determined that the stope 
stability is impacted by the horizontal thickness of the inclusion, the hardness 
ratio and the order of stoping in a mine block. Application of open stope 
methods in selective mining of complex structured ore bodies of Kryvyi Rih 
iron ore basin enables increased quality of the mined ore mass without 
significant capital and operating costs and results in better environment of the 
region. 

1 Introduction 
Kryvyi Rih iron ore basin is represented by thick deposits of rich and lean ores with dirt or 
ore inclusions (DOI) of 2 to 15 m [1 – 3]. The Protodiakonov hardness ratio of DOI is  
8 – 16, that is on average by 4 – 6 units higher than that of the main massif. DOI in rich 
ores make nearly 300 mln t of which up to 800 thousand t are mined annually [4 – 6]. 

Underground mining of complex structured ore bodies (CSOB) is conducted by bulk-
caving and open stope methods resulting in 3–6% less iron content in the mined ore and 
1.2 – 1.5 times greater than standard ore losses. Thus, the amount of the mined ore with the 
iron content of over 62% does not exceed 60% that leads to loss of the world sales market. 

To increase sales, mining enterprises apply resource-saving technologies enabling 
increase of volumes of mined ore with the iron content of 60% to 80%. This is achieved 
through use of a complex approach considering the concept of the environmental-economic 
system management and taking into account availability of functioning elements applying 
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the organizational-technical control theory [7 – 9]. The results of studying ore raw material 
mining and processing enable concluding that concentration efficiency indicators depend 
greatly on operational information and current technological processes [10 – 13]. In most 
cases, when developing nondestructive control methods, electromagnetic, ultrasonic and 
radiometric techniques are used. However, all these approaches result in not only greater 
mining costs but also deterioration of the regional environment.  

To increase mining of non-diluted ore at Kiruna mine (Sweden), selective mining with 
sorting ore mass underground and its transporting by main shafts is used [14 – 15]. To 
support main openings, the mine applies modern methods of controlling the state of the 
rock massif disturbed by underground mining [16 – 18]. It should be noted that their 
implementation at Kryvbas underground mines will lead to deterioration of labour 
conditions and increased mining costs due to complicated mining, geological and technical 
conditions [19 – 21]. 

Development of complex structured deposits is highlighted in many investigations 
dealing with determining regulations of extraction indicators, manifestations of rock 
pressure, sequence of mining and determining parameters of basic constructive elements of 
mining systems [22 – 24]. Efficiency of mining CSOB is proved to be impacted by mining 
geological and technical conditions [25 – 27], as well as by the order of stoping, rock 
pressure, mining intensity, number and stability of pillars, level height, mutual arrangement 
of main strike stopes and pillars. 

When applying room-and-pillar methods, the iron content in the mined ore mass 
increases as compared with bulk caving systems but conditions of further mining 
deteriorate due to changes in rock massif stresses caused by concurrent appearance of 
tension and compression stresses [27 – 30]. 

According to [31 – 33], to provide stability of stopes considering changes of stress 
concentration, it is practicable to apply open stope methods taking into account physical 
and mechanical properties of DOI and sequence of mining a block. 

2  Methods 
To settle the problem of iron content increase and ore loss decrease when mining deposits 
represented by complex structured ore bodies, it is reasonable to apply the method suggested 
in [34 – 36]. The authors suggest modernization of traditional concentrating through 
hydrometallurgical and chemical processing that enhances efficiency of concentration for the 
account of using other energy kinds. This direction of modernization is based on processes of 
force impacts on a substance during disintegration in the activator and does not consider 
processes connected with mining useful minerals by underground methods. 

The critical analysis of works dealing with mining and processing useful minerals 
enables the following conclusions: 

1. Most authors suggest increase of the iron content in the mined ore at the expense of 
building an underground or surface mining and concentrating complex that will result in 
increased mining costs and lost world markets. 

2. Increase of the iron ore content in the mined ore at the first stage may be achieved 
through applying resource-saving selective mining aimed at excluding the concentration 
process. At that, mining of ore bodies with horizontal thickness of dirt or ore inclusions of 
less than 12 m is suggested to be conducted by the traditional underground method 
involving concentrating combines. 

Thus, when mining CSOB, the necessity arises to enhance the resource-saving 
technology which provides the iron content increase at selective mining of deposits 
depending on mining systems applied. That is why, it is essential to determine impacts of 
dirt inclusion thickness and a mining system on the mined ore mass volumes. 
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3 Results and discussion 
To increase mined ore volumes that directly impact economic indicators, it is reasonable to 
mine complex structured ore bodies by the selective open stope method according to the 
developed classification [4, 24, 37]. Application of the selective open stope system enables 
significant enhancement of quality of the useful component in the mined ore as compared 
with the bulk caving system and decrease of mining costs when applying the mining-and 
filling system. 

The suggested mining open stope system provides for a certain sequence of mining 
operations depending on mining and geological conditions of CSOB. Mining within a mine 
unit is performed from the hanging wall to the footwall and consists of two stages, Fig. 1: 
stage I – ore is mined from the hanging wall with the dirt inclusion left in the stope as a 
pillar; stage II – the remaining ore is mined from the footwall depending on the order and 
sequence of mining operations. 

 

 

 
Fig. 1. The basic diagram of mining complex structured ore bodies in stable ores by open stope 
systems. 
 

 , 0 (2019)E3S Web of Conferences https://doi.org/10.1051/e3sconf /201912301007123 0

Ukrainian School of Mining Engineering - 2019
10 7 

3



To obtain high values of ore mass extraction from mining by open stope systems, it is 
necessary to provide stability of exposures and pillars and, consequently, stability of DOI 
for the whole period of mining the stope of SCOB. That is why, when mining complex 
structured ore bodies by open stope systems, it is essential to specify constructive elements 
of the stope (which are not yet completely defined [38 – 40]) and substantiate the minimum 
permissible thickness of the dirt or ore inclusion that will provide stability of stopes and the 
ore body. 

When applying stope systems depending on the stage and order of mining operations in 
a mine block, there occur different loads. Depending on the load action on DOI, a field of 
tension or compression stresses is formed in it. 

Further deeper mining of reserves of rich iron ores results in deterioration of mining and 
geological conditions and, consequently, caving of the hanging wall ores at exposure 
creation.  In such conditions it is reasonable to change the procedure of mining blocks with 
development of mining operations from the footwall to the hanging wall.  

Mining a block represented by CSOB from the footwall to the hanging wall changes the 
character of stresses and, consequently, produces a significant impact on DOI stability, 
Fig. 2.  

 

 
Fig. 2. The computational diagram for determining constructive elements of the room-and-pillar 
mining method when mining a stope according to option 2 (see Fig. 1). 

 
Thus, at stage I after the exposure at the footwall is created (stope 1), on the contour of 

DOI there occur tension stresses. After breaking the ore massif and its further drawing from 
stope 2 (see Fig. 1), the tension stresses on the contour of DOI with stope 1 decrease and 
there appear compression stresses on the other side of DOI. 

Maximum tension stresses on the contour of DOI and stope 1 will appear after stope 
2 caving. That is why, when determining the permissible length of the exposure, it is 
essential to take into account weight of the caved rocks that will impact tensile stresses on 
the DOI – stope 1 contour. Fig. 3 demonstrates that DOI is impacted by the caved ore in the 
footwall triangle. 

Maximum stresses occurring in the pillar presented as sandwiched beam impacted by 
the caved ore weight are calculated by the expression [5, 39]: 
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where σx is maximum stresses, t/m; Мx is the maximum bending moment value at part z of 
the DOI exposure length along the axis x, t/m; Mr is the maximum bending moment caused 
by caved rocks, t/m; lDOI is the maximum permissible length of the dirt or ore inclusion 
exposure, m; mDOI is normal thickness of the dirt or ore inclusion, m. 

The maximum bending moment of the triangular shape caused by caved rocks is 
calculated by the formula 
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where qr is weight of the caved ore in the triangle of the footwall per 1 m of DOI length, 
t/m2; lr is the inclined length of the caved rocks at the footwall, m. 

After formula (2) is simplified, the following expression for determining the maximum 
bending moment is obtained: 
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Maximum stresses occurring in DOI and calculated according to formula (1) 
considering the maximum bending moment of the caved ore (3) are determined by the 
expression: 
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It should be taken into account that the length of the dirt or ore inclusion equals the 
inclined length of the caved ore, so expression (4) will look like: 
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The maximum permissible length of the DOI exposure presented as a beam considering 
the maximum bending moment of the caved ore weight is determined by the expression: 
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where Kf is the conversion rock hardness into stress ratio; f is the hardness ratio of rocks of 
the dirt or ore inclusion (Protodyakonov scale); Kstr.w is the ratio of structural rock 
weakening caused by fractures (accepted from 0.65 tо 0.95); Kst is the rock hardness ratio 
(accepted 1.5 – 2.0). 

The caved ore weight in the triangle of the footwall per 1 m of DOI length: 
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where hst is the height of the caved ore layer (height of a level or sublevel), m; в is the 
caved ore width in the upper part of the stope of stage II of mining, m; γo is the volume 
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weight of ore, t/m3; Kr is the primary ore loosening factor; α is the dirt or ore inclusion dip 
angle, degrees. 

On inserting (7) into (8) we obtain: 
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The results of the calculations enable building dependencies of the exposure span of the 
dirt or ore inclusion (Fig. 3) and width of the stope of stage II of mining. 
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Fig. 3. Dependencies if the maximum inclusion length on the normal DOI thickness and hardness at 
the width of the stage II stope of 25 m (option 2): 1 – 5 is the at DOI hardness of respectively 8, 10, 
12, 14, 16; 6 is the permissible length (according to ROMI). 

 
The dependencies in Fig. 3 demonstrate that increase of thickness of DOI from 5 to 

12 m with its hardness of 12 (Protodiakonov scale) causes increase of the exposure length 
from 8 tо 40 m. When DOI rock hardness decreases from 12 tо 8, the length of the 
exposure decreases from 8 to 4 m at the normal thickness of 5 m. It should be noted that, 
according to the technique developed by the Research Ore Mining Institute (ROMI), the 
maximum stable length of an exposure for given design conditions should not exceed 24 m. 
thus, according to the calculations performed, if a stope is created with the exposure span of 
24 m and with DOI hardness of 8, it will be destroyed regardless of the inclusion thickness. 

The diagrams in Fig. 4 demonstrate that increase of the width of the stope along the 
strike from 25 to 60 m at normal thickness of the dirt or ore inclusion of 10 m decreases the 
maximum span of the exposure from 36 to 15 m with the DOI decreased hardness from 
16 to 8. 
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Fig. 4. Dependencies of the maximum inclusion length on the stope width and thickness of DOI rocks 
at the normal thickness of the dirt or ore inclusion of 10 m (option 2). 
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ANSIS-16.0 – based mathematical model of the change of fields of equivalent stresses in 
the rock massif around stopes at different stages of mining operations when mining the 
deposit from the footwall to the hanging wall is given in Fig. 5: initial – without mining 
operations; intermediate – formation of a stope in the footwall; final – formation of a stope 
in the hanging wall.  
 

initial intermediate final 

Fig. 5. The results of mining CSOB from the hanging wall at the compressive strength of the dirt 
inclusion of 160 МPа. 

 
Model studies registered a field of equivalent stresses in the massif around stopes and in 

the middle of the dirt inclusion at different stages of mining operations (Fig. 1, option 2). 
There were conducted 9 series of studies that differed from each other by physical and 
mechanical properties of the rock massif and DOI, other parameters (mining depth, level 
height, thickness) remained unchanged. The results of the studies enable building 
dependencies of changes of equivalent stresses in the middle part of the dirt inclusion, Fig. 6.  
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Fig. 6. Dependencies of equivalent stresses changes in the middle part of the dirt inclusion on the 
stage of mining operations, ultimate strength of DOI rock at ultimate strength of ore of 90 MPa and 
the level height of 90 m. 

 
The diagrams in Fig. 6 show that the character of equivalent stresses changes in DOI in 

its middle part is only impacted by the order of mining operations in a mine block. At that, 
further loading beyond the yield point increases the proportional limit according to Hooke’s 
law [4, 5, 38]. 

Thus, when the compressive strength is greater than 120 МPа (rock hardness of 12, 
Protodiakonov scale), the I and II stage stopes will be stable. It should be noted that 
mathematical modeling cannot practically reproduce the rock massif and that is why the 
stope exposure length should be decreased by the stability safety factor. 
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4 Conclusions 
According to the study results, selective mining of complex structured ore bodies enables 
increasing the iron content in the mined ore mass. However, high indicators of mining can 
be achieved when applying certain mining systems in current mining and geological 
conditions. Ore bodies containing dirt inclusions of 4 to 12 m thick should be mined by 
mining systems used at underground mines of Kryvyi Rih basin. 

Modeling results enable determining that at the level heights of 90 m (the span of the 
inclined exposure of 58.9 m) and the stope width of 25 m at DOI ultimate strength less than 
120 MPa the exposure remains stable. When the ultimate strength exceeds 120 MPa, the 
exposure span will be instable, DOI and stopes will be destroyed. 

Thus, application of selective mining methods when mining stopes presented by CSOB 
will enable not only enhancing mined ore mass volumes and, consequently, retaining the 
world market but also decreasing mining and processing costs.  

The work was supported by the Ministry of Education and Science of Ukraine within the framework 
of the state scientific topics “Determination of regularities of the stress-strain state of rocks disturbed 
by workings with the purpose of developing resource-saving ore mining technologies” (State 
registration No. 0115U003179). 
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