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Abstract. This article made a study of various schemes' options and control algorithms for 12-pulse thyristor bridge rectifiers.

While maintaining the same speed's modes were analyzed changes of the power factor and harmonic composition of current and voltage,

as well as was assessed their level based on the IEEE 519-1992 standard. Simulation of the electric power system has been performed in

the software environment Matlab. The aim of the job is to identify the most suitable ways of connecting and control thyristors schemes

for improving power factor and harmonic composition of current and voltage. The results of the work will be put in a series of activities to

effectively phase manage the rolling mill drives' distributed power converters.
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Introduction. If guided by international
standards, such as IEEE 519-1992 [1], the energy
parameters of the power network of the rolling mills'
drives are currently characterized by exaggerated
consumption of reactive power and saturation of
harmonic components of voltage and current
the with
semiconductors. As a consequence, there has been

generated by power equipment
a decrease in service life of equipment and have
happen emergency situations [2-3].

Therefore, this work aimed to assess the
current level of network harmonics on its model,
and then in real-time, and the development of
activities to keep the levels of distortion within the
specified range according to the standard, is very
relevant. There are two approaches to solving this

problem. One of them is the creation of more

35kB

advanced universal filters of highest harmonics for
systems with multipulse rectifiers [4].
is that in
observed the trend [5-6] of an integrated approach

The second - recent years
to the creation of more advanced topologies
powerful rectifiers and their control systems to
improve EMC converters with a power line. It allows
to solve several problems simultaneously:

- to improve the energy indicators of the
system (power factor, efficiency);

- to reduce the highest harmonics' content
of the input current of the converter.

Materials and methods. This work is
devoted to creating perfect topology power circuits
powerful rectifiers and their control systems based
on modeling in MatLab environment.
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Figure 1. The power supply circuit for drives of the rolling line
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Consider one of the existing options of
drives' connection schemes for the line of rolling
stands in rolling plant, which includes 21 rolling
stands according to the scheme shown in Fig. 1.

The power factor and harmonic distortion
for curves of voltage and current belong to the
energy indicators on which pay attention in this

Results. Analyses of these indicators has
been performed in relation to the five options of
thyristor bridge rectifier's control system for a 12-
pulse  circuit irreversible  thyristor  drive.
Investigation realized with the help of simulation in
MatlLab package (see Fig. 2). The following are

structural diagrams of models for the study of

article. energy performance.
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Figure 2. The model of the system of 21 drives with not symmetric control (one of the two secondary
windings of the individual transformers for each drive are connected by wye, another - delta)
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Figure 3. The drive’s model where are not symmetrical bridges (have been controlled cathode and anode groups of

thyristors)

First option. Not symmetric control - all the
bridges are not symmetric (control pulses are
applied to the cathode and the anode groups of
different bridges).

Main indicators (speed, power factor and
the spectral composition of the transformer’s
current and voltage) are shown in figures 4 -7.
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Figure 4. Charts speeds of stands with the moment of

inertia is 50 kg*m? (option 1)1 - of the fastest (steady

value is 106.1 s -1); 2 - of the slowest (steady value is
77.5 s-1)

Figure 5. Power factor under work of the 21 stands with

not symmetrical control (Km = 0.9223)
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Figure 6. The spectral composition of 32 MVA
22.33%) under
the work of 21 stand with not symmetrical control
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Figure 7. The spectral composition of 32 MVA
transformer's secondary voltage (THDu = 2.94%) under
the work of 21 stand with not symmetrical control

Second option. Not symmetric control - all
the bridges are not symmetric (control pulses are
applied to the anode groups of different bridges)

The the
transformer’s current and voltage is shown in

spectral  composition  of

figures 8, 9.
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Figure 8. Spectral composition of the current THDi =
22.48%

Selected signal ques FFrMndw(\ .eay 30 cycles

Hﬁ“ \HJH;“HMH i
M H‘f‘ Il H"f f "W’ ”‘"‘H | J“f\lf‘ \I\E

T\ma(l

Fundamental (50Hz) = 7778, THD= 3.04%
T T T

Mag (% of Fundamenéal]
o i
|

L .

o ] G 5 10 iz i 6 18 0

Figure 9. Spectral composition of the voltage THDu =
3.04%
Third option. Not symmetric control - one

bridge is completely controlled, the second is diode

bridge.
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Figure 10. Spectral composition of the current THDi =
15.02%
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Figure 11. The drive’s model where one bridge is completely controlled, the second is diode bridge
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Figure 12. Spectral composition of the voltage THDu =
2.55%

Fourth option. Not symmetric control -
first bridge is half-controlled and second diode
bridge — uncontrollable. The spectral composition of
the transformer’s current and voltage is shown in
figures 13, 14.
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Figure 13. Spectral composition of the current THDi =
24.23%
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Figure 14. Spectral composition of the voltage THDu =
3.26%

Fifth option. All the bridges are controlled

- symmetric control. The drive's model with two

symmetric controlled bridges performed similarly to
Figure 10 (model on the left)

Figure 15. Charts speeds of stands with moment of inertia
is 50 kgem? (option 5): 1 - of the fastest (steady value is
106.1 s7); 2 - of the slowest (steady value is 77.5 s7")
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|

Figure 16. Power factor 0.8975 with the moment of
inertia is 50 kgem?
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Figure 17. Spectral composition of the current THDi =

2.51%

For ease of comparison, in all cases firing

angle chosen so as to provide the speed of the

Table 1. Comparative characteristics of energ
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Figure 18. Spectral composition of the voltage THDu
0.84%

775 s'. Materials

investigations are summarized in Table 1.

slowest cage about

indicators for the 12-pulse bridge rectifiers

. All bridges All bridges are One bridge
One bridge . . . .
. . are not not symmetric | is symmetric, All bridges
is not symmetric, ) )
i symmetric (only (anode and the second |are symmetric
the second diode .
anode groups) | cathode groups) diode
Power factor 0,9404 0,9228 0,9223 0,9235 0,8975

THDu 3,26 3,04 2,95 2,55 0,84
THDi 24,23 22,48 22,33 15,02 2,51

Conclusions In the outcome of the study was
determined the trend of constructing circuits'
topology of 12-pulse thyristor rectifier in terms of
improving energy indicators. For improving the power
factor, the most appropriate scheme is the circuit with
series bridges one of which - unbalanced, and the
other - an unmanaged or managed with the angle of
0 degrees.

All not symmetric circuits of 12-pulse bridges
or with unmanaged bridges, when its work in the full
speed range, characterized by not sinusoidal current's
factors, exceeding the normative indicators by 3-5
times. With regard to specific results of this study, it is
possible to note the following:

- the best for the power factor (0.9404)
scheme with one not symmetric bridge (second diode
bridge), but it is also the worst for THDi (24.29);

- the worst for the power factor (0.8975) is a
fully balanced circuit, but all other indicators she has
better than normative (in 5 times by the voltage and in
2 - by the current).

Further development of research possible by
develop systems with more complex control algorithm
with a hybrid control based on fuzzy logic [7-8].
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