0,2 м дозволяє майже повністю виключити розтягуючі напруження на внутрішніх волокнах кріплення, а також утримати ексцентриситет у дозволених межах.

З підняттям склепіння на 0,3 м змінилось відношення ширини до висоти і тепер воно має значення 13,5/4,9=2,75. Відповідно до цього змінилось і значення відношення об'єму бетону до об'єму породи на 1 м³ камери, тепер він має значення 4,39/45,3=0,097. Виходячи з результатів розрахунку можна відмітити, що порівнюючи з проектною формою та розмірами кріпленням камери, в запропонованому варіанті знижується витрата бетону на 30% та трудомісткість на 29%, на укладання монолітного бетонного кріплення.

Список літератури

- 1. **Покровский Н.М.** Технология строительства подземных сооружений и шахт. Учебник для вузов в двух частях. Ч. II. Технология сооружения вертикальных, наклонных выработок и камер. М., Недра, 1982. 295с.
- 2. **Насонов И. Д., Федюкин В. А., Шуплик М. Н**. Технология строительства подземных сооружений. Учебник для вузов в 3-х частях. Ч. 11. Строительство горизонтальных и наклонных выработок. М., Недра, 1983. 272 с.
 - 3. Мостков В. М. Подземные сооружения большого сечения. М., Недра, 1974. –
 - C. 186 187.
 - 4. **Максимов А.П.** Горное давление и крепь выработок. М., «Недра», 1973. 288с.
- 5. Мостков В. М. Строительство сооружений большого сечения, Гостехиздат, 1963. 307с.

Рукопис подано до редакції 31.03.12

УДК 669.054: 629.113

А.В. ПЕТРОВ, В.П. ЖИЛКИН, Г.Г. ГУБИН, кандидаты техн. наук, ГВУЗ «Криворожский национальный университет»

КОМПЛЕКСНАЯ ЭНЕРГОТЕХНОЛОГИЧЕСКАЯ СИСТЕМА ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ ТВЕРДЫХ БЫТОВЫХ ОТХОДОВ

В данной работе представлена технология и оборудование для её осуществления, позволяющая одновременно с уничтожением отходов использовать тепло от их сжигания в одном агрегате с одновременным огневым обезвреживанием отходящих газов от вредных примесей.

Введение. Проблема загрязнения городов отходами своей жизнедеятельности и ее решение оказались весьма сложной научно-технической задачей. Особая специфика заключается в возможном сосредоточении в этих отходах практически всего многообразия веществ и материалов, встречающихся в природе и искусственно созданных человеком, а также в непрерывном экспоненциальном росте выделяемого их количества. На защиту и сохранение окружающей среды, в особенности в зонах крупных мегаполисов, затрачиваются значительные материальные, трудовые и земельные ресурсы.

Анализ исследований и публикаций. Различные источники свидетельствуют о том, что темпы накопления твердых, бытовых отходов (ТБО) в Украине составляют около 360 кг в год на одного жителя. Население земного шара увеличивается на 1,5-2,0 % в год, а объем мусорных свалок на 6 %. Не случайно во всех развитых странах изыскиваются приемлемые пути и способы решения проблемы ликвидации городских свалок с ТБО. Однако, до настоящего времени магистральный путь решения проблемы так и не определился. Это относится и к Украине.

С каждым годом на мусорных полигонах Украины твердых бытовых отходов становится на 4 млн м³ больше. В 2010 г. их объем достиг уже 55 млн м³. Ежегодно один Киев вывозит на свалки свыше 1 млн т мусора, при этом загрязняются почва, атмосферный воздух и вода.

Ни одна разрабатываемая технология не стала доминирующей. [1] Разработанные и освоенные в мировой практике методы промышленной переработке ТБО (сепарация и разделение на компоненты вторсырья, компостирование, биотермика, низко- и среднетемпературный пиролиз, мусоросжигание) в рамках современных экологических и социально-экономических требований не обеспечивают удовлетворительного решения проблемы. Основные причины этого заключаются в следующем:

низкая интенсивность процессов;

низкая производительность;

малая степень утилизации материально-энергетических ресурсов отходов;

[©] Петров А.В., Жилкин В.П., Губин Г.Г., 2012

значительный уровень вторичных отходов и загрязнение окружающей среды; высокая стоимость удельных затрат при переработке.

Однако как показывает анализ технических решений по переработке ТБО существующих в развитых странах, предпочтение отдается термическому обезвреживанию, т.е. сжиганию ТБО в агрегатах различной конструкции. При этом рационально используют тепло от сгорания ТБО, используя его как альтернативный вид топлива. Чаще всего это получение пара и на его основе - электроэнергии.

Процесс термической обработки основан на морфологическом составе ТБО (рис. 1), которые содержат около 70 % органических (горючих) компонентов (из них около 35% углерода).

Теплотехнические характеристики основных групп однородных компонентов ТБО приведены в табл. 1.

Процессы термического обезвреживания ТБО осуществляют с применением следующих видов слоевого сжигания [2,3]:

слоевое сжигание с принудительным перемешиванием материала;

сжигание-газификация в плотном слое кускового материала без принудительного перемешивания и перемещения материала;

сжигание в кипящем слое.

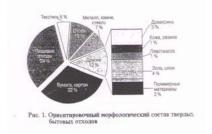


Таблица 1

теплотехнические характеристики компонентов тво										
Компоненты	Состав рабочей массы, %							Выход летучих	Низшая теплота	
Компоненты	C^p	H^p	Op	N^p	S^p	A^p	W^p	выход легучих	сгорания	
Бумага	27,7	3,7	28,3	0,16	0,14	15	25	79,0	9,48	
Пищевые отходы	12,6	1,8	-	0,95	,15	4,5	72	65,2	3,42	
Текстиль	39,4	4,9	23,2	3,4	1,1	8	20	84,0	15,7	
Древесина	40,5	4,8	33,8	0,1	-	0,8	20	67,9	14,4	
Кожа, резина	65,0	5,0	12,6	0,2	0,6	11,6	5	49,0	25,78	
Пластмасса	55,1	7,6	17,5	0,9	0,3	10,6	8	89,0	24,35	
Отсев	13,9	1,9	14,1	-	0,1	50	20	54,0	4,6	
Зола, шлак	25,2	0,45	0,7	-	0,45	63,2	10	2,7	-	
Полимеры	47	5,3	27,7	0,1	0,2	11,7	8	60,2	18,2	
Стеко, камни, металл	-	-	-	-	-	100	_	-	-	

Слоевое сжигание с принудительным перемешиванием осуществляют на подвижных решетках и во вращающихся барабанах. В настоящее время наибольшее распространение получили процессы слоевого сжигания ТБО на колосниковой решетке. Практически все мусоросжигательные заводы (технология и оборудование) функционирующие на постсоветском пространстве были приобретены у зарубежных фирм и работают не достаточно эффективно.

Таким образом, учитывая выше приведенные данные и создавшуюся в стране ситуацию по значительному накоплению мусоросвалок бытового мусора, была поставлена задача по изысканию рационального способа переработки ТБО особенно в городах с горнометаллургическим комплексом.

Изложение материала. Учитывая значительный опыт эксплуатации и изготовления тепловых агрегатов с непрерывно движущейся колосниковой решеткой, было решено провести исследования по сжиганию ТБО и использованием тепла непосредственно в месте его получения.

Исследования проводили на лабораторной агломерационной установке, оборудованной разборной цилиндрической аглочашей с перфорированным дном диаметром 120 мм и общей

высотой 1000 мм. Опыты проводили также в аглочаше прямоугольного сечения (300-300) мм с колосниковой решеткой высотой 0,4 м и имеющую дополнительную наставку высотой 400 мм.

Агломерационная чаша оснащена вакуум-камерой, соединенной газоходом с вакуум-насосом РМК-4.

Температуру отходящих газов в вакуум-камере аглочаши и на границе слой ТБО - известняк измеряли при помощи термопары XK, самопишущего потенциометра $KC\Pi$ -4 и милливольтметра M-64. Для замера разрежения в вакуум-камере использовали тягомер $TM\Pi$ - Γ со шкалой от 0 до 1500 мм вод.ст.

Исходным материалом служили ТБО, в составе которых были представлены все характерные составляющие компоненты. В качестве теплопотребителя был выбран известняк. При сгорании ТБО образующиеся горючие газы утилизируются в слое известняка, который укладывается непосредственно на решетку, происходит обжиг его с получением извести для строительного использования.

В процессе исследований были отработаны технологические параметры: выбрано рациональное соотношение загружаемых на решетку компонентов: ТБО - известняк, высота обжигаемого слоя, крупность укладываемого в слой известняка; изменение и регулирование газодинамических параметров комбинированного слоя; изменение температуры в различных участках слоя и отходящих газов; методы предварительной подготовки ТБО и известняка, определено качество готового продукта - извести.

Основные показатели исследований приведены в табл. 2.

Таблица 2

Показатели процесса сжигания ТБО

Условия опыта			1		Скорость	Кол-во	Удельная произ-	
		Продол-	Скорость	Температура, от-			водительность, T/M^2 час	
соотношение ТБО/известняк	наличие твердого топлива, %	жительность процесса, мин	протекания процесса, мм/мин	ход газов под решеткой (max), °С	фильтрации воздуха, м/с	воздуха кг/т ТБО	по ТБО (исход- ный)	по извес- ти
9,0	-	9,0	33,3	650-750	1,8	14350	0,6	0,2
4,0	-	8,0	37,5	600-750	1,4	9930	0,7	0,2
2,3	-	7,0	42,8	600-700	1,1-1,5	8378	0,7	0,4
1,0	-	10,0	30,0	600-700	1,6-2,8	19097	0,5	0,6
0,9	-	9,0	33,3	600	1,5	11715	0,5	0,6
1,05	2,5	10,0	30,0	650-780	0,95-1,7	11520	0,5	0,5
1,0	4,6	7,0	42,8	680-780	1,55-3,2	14430	0,8	0,7
0,9	4,9	4,9	23,0	680-800	1,4-1,85	19860	0,4	0,4
1Д	5,0	11,0	27,3	680-800	1,5-1,9	17326	0,5	0,4
2,16	5,0	7,0	42,8	750-800	1,7-2,5	13030	0,7	0,4
	(торф)							

Результаты проведенных исследований позволили установить:

заданный состав ТБО является топливом с достаточной активностью, обеспечивающей интенсивное горение в присутствии кислорода воздуха;

за счет тепла отходящих газов, образующихся при сжигании ТБО, возможен обжиг известняка с получением строительной извести;

укладку продуктов на решетку следует осуществлять в следующем порядке: низ слоя - известняк крупностью 5-15 мм высотой 100-200 мм, верх слоя - ТБО, высотой 450-550 мм;

подстилающий слой известняка и образованной извести являются адсорбентами сернистых соединений и хлора, выделяемых при сгорании компонентов ТБО.

На основе результатов исследований [4], а также используя последние достижения в области конструктивных параметров прямолинейных конвейерных машин с колосниковой решеткой, было обосновано и разработано инженерно-технологическое решение проблемы: комплексный высокотемпературный энерготехнологический процесс и. агрегат, в контурах которого производится сжигание ТБО, с одновременным использованием тепла и частичной очисткой от вредностей отходящих газов [6]

Подготовленные исходные материалы: ТБО и известняк транспортируют в главный корпус и сосредотачивают в расходных бункерах, оснащенных соответствующими дозаторами.

Смешивают измельченные отходы с известковым отсевом в двухвальном шнековом смесителе. Благодаря совершенствованию конструкции, в агрегате совмещаются операции смешивания, подсушивания и подогрева материалов технологическим воздухом с температурой 300 °C, поступающим от конвейерной машины.

Смешанный, подсушенный материал выдается непосредственно в расходный бункер установленный в головной части машины, из которого затем укладывается на подогретый подстилающий слой известняка.

Основным агрегатом термической переработки ТБО является мусоросжигательная конвейерная машина. Благодаря двухслойной загрузке, тепло горения отходов поступает в подстилающий слой известняка и расходуется на его обжиг.

В машине реализован ряд новых конструкторских решений: установлен лопастной укладчик ТБО, горн интенсивного зажигания, специальные рыхлители слоя. Машина максимально герметизирована. Надежность работы несущих конструкций в зонах высоких температур обеспечивается струйными воздушными системами охлаждения. Нагретый воздух после охлаждения конструкций, направляется в сжигаемый слой для интенсификации процесса горения и выгорания вредных примесей в отходящих газах. Тележки конвейерной машины выполнены с максимальной степенью надежности и оборудованы специальными уплотнениями, герметизирующими надслоевое пространство и нижнюю часть газоотвода.

Зажигательный горн, оснащенный двухпроводными вихревыми горелочными устройствами, обеспечивает нагрев поверхности слоя ТБО до 1000 °С и обеспечивает снижение потерь тепла в окружающую среду, уменьшает потери от лучистого теплообмена во внутреннем пространстве горна; обеспечивает быстрое равномерное зажигание.

В схеме газотоков машины предусмотрена максимальная степень утилизации тепла и организация рециркуляции потоков для их огневого обезвреживания и уменьшения объемов выбросов газов в трубу.

В разработанной технологии приняты меры, позволяющие снизить концентрацию вредных примесей в газах, образующихся при сжигании ТБО. К этим мерам следует отнести технологический прием неоднократного просасывания отходящих газов через подстилающий слой известняка, извести, который является адсорбентом сернистых, хлористых, фтористых соединений. Наиболее эффективным методом освобождение отходящих газов от диоксинов и фуранов является дожигание их при температуре 800- 1000 С с прибыванием их в этих условиях в течение 2-4 секунд. Окончательную очистку газов перед их выбросом в атмосферу следует производить в «мокром» газоочистном аппарате с использованием абсорбционных процессов, основанных на применении щелочных поглотителей. Наиболее приемлемым реагентом следует считать водную суспензию гидрооксида кальция, который обладает высокой химической активностью по отношению к НС1, SO₂, NO_x, P₂O₅ и др. кислым компонентам, превращая их соответственно в хлорид, сульфит, сульфат, нитрат и фосфат кальция, а образующиеся в процессе абсорбции трудно растворимые соли CaSO₃, Ca₃(PO₄)₂ хорошо выводятся из системы [5].

В заключение следует отметить, что разработанная технология и схема оценки аппаратов по своей насыщенности технологическими операциями и оборудованием не превышает по этим статьям известные и функционирующие зарубежные заводы по термической переработке ТБО.

К достоинствам разработанной технологии следует отнести то, что они могут быть осуществлены с использованием основных агрегатов, применяемых в горнометаллургической промышленности, при некоторой их модернизации (например, агломерацонных или обжиговых машин и сопутствующего оборудования). Заменяемые на некоторых металлургических заводах в аглофабриках агломерационные машины или на фабриках окомкования машины для обжига окатышей на новые, могут еще послужить для сжигания ТБО. В регионах, в которых существует металлургическое производство с образованием доменного и коксохимического газов - эта технология будет наиболее целесообразна. Это в полной мере относится к горнометаллургическому комплексу Кривого Рога.

Дальнейшая направленность работ по этой проблеме состоит в решении вопросов снижения энергозатрат и исследовании характеристики отходящих газов в зависимости от морфологического состава ТБО.

Выводы. Темпы накопления ТБО свидетельствуют о необходимости безотлагательного решения проблем уничтожения свалок с переработкой накопленных в них отходов.

Анализ существующих технических решений и функционирующих комплексов в ближнем и дальнем зарубежье, свидетельствуют о том, что наиболее радикальным способом уничтожения отходов является сжигание их в специальных агрегатах.

Представленная в работе технология отличается оригинальностью решения проблемы: совмещением в контурах основного агрегата сжигания отходов, утилизации тепла, очистки от вредных примесей отходящих газов и получением продукта (извести), пригодного для строительной отрасли.

Технология позволяет применять известные многократно опробованные агрегаты, а также предусматривать изготовление и освоение без привлечения иностранного оборудования и специалистов. Список литературы

- 1. **Шубов Л.Я., Ставровский М.Е, Шехирев Д.В.** Технология отходов мегаполисов, технологические процессы в сервисе, МГУС, МИСиС, Москва, 2002. 374 с.
 - 2. Беньямовский Д.Н. Термические методы обезвреживания твердых бытовых отходов. -М.: Стройздат, 1979-192 с.
- 3. **Пурин В.Р.** Бытовые отходы. Теория горения. Обезвреживание. Топливо для энергетики. М.: Энергоатомздат, 2002. 112 с.
- 4. Арсентьев В.А., Петров А.В., Белоглазов И.Н., Феоктистов А.Ю. Новая технология термического уничтожения твердых бытовых отходов; Черные металлы, июль-август, 2006.
- 5. Четвериков В.В., Гринченко Н.Н., Марцевой В.П. Методы подавления эмиссии вторичных токсичных соединений при термическом обезвреживании.
- 6. Патент РФ №2265773. Способ и устройство для сжигания твердых бытовых отходов/ **В.А.Арсентьев, А.В. Петров.** Бюллетень №34, 10.12.2005г.

Рукопись поступила в редакцию 20.02.12

УДК 669

В.В. ПЛОТНІКОВ, канд. техн. наук, доц., Т.П. ЯРОШ, канд. техн. наук, доц.,

О.В. МАРАСАНОВА, асистент, ДВНЗ «Криворізький національний університет»

ПЕРСПЕКТИВИ УТИЛІЗАЦІЇ ПРОМИСЛОВИХ ВІДХОДІВ У МЕТАЛУРГІЙНОМУ ВИРОБНИПТВІ

Встановлено ресурси, склад та властивості шламів промислових підприємств. Запропоновано рекомендації шодо їх утилізації в металургійному виробництві.

Проблема та її зв'язок з науковими та практичними задачами. В останні роки в зв'язку з утворенням і накопиченням значної кількості промислових відходів і необхідністю вирішення екологічних проблем зростає значення комплексної їхньої утилізації. Наприклад, лише на металургійних підприємствах України в заскладованих залізовмісних шламах міститься більше 50 тис. т цинку, ресурси якого щорічно можуть збільшуватися на 13 тис. т при повному освоєнні потужностей металургійних агрегатів. Крім того, в червоних шламах міститься 8,8 тис. т цинку. При цьому загальні ресурси цинку складають близько 74 тис. т.

Переробка цинквмісних шламів в агловиробництві веде до підвищення вмісту цинку в агломераті, що у свою чергу призводить до збільшення припустимої кількості цинку, який надходить в доменну піч. Наявність цинку в шихтових матеріалах доменних печей є причиною зниження міцності коксу і залізорудної сировини, передчасного руйнування вогнетривкої кладки і розривів кожухів печей, різкого погіршення газодинаміки доменного процесу і збільшення витрати коксу. Вилучення з обороту цинквмісних шламів і скидання їх у шламонагромаджувачі погіршує екологічну обстановку в промислових регіонах України.

При виробництві глинозему на вітчизняних і закордонних підприємствах утворюється значна кількість червоних шламів. Так, при виробництві 1 т товарного алюмінію утворюється 1,3 т червоних шламів, що дотепер не знаходять широкого застосування. Тільки на Миколаївському глиноземному заводі (МГЗ) щорічний вихід цього продукту перевищує 1 млн. т. При цьому, більше 25 млн. т його накопичено в шламонагромаджувачах, що переповнені і становлять екологічну небезпеку. Аналогічна ситуація складається і на Дніпровському алюмінієвому заводі (ДАЗ). Значна частина сировини, що добувається, (до 90% і більше) найчастіше відправляється у відвали. При цьому створюються значні запаси відходів, так звані техногенні родовища. Комплексний підхід до переробки вторинної сировини дозволить витягати й використовувати цінні і дефіцитні для України кольорові метали й забезпечувати підвищення екологічної безпеки територіальних комплексів і відповідних технологій.

[©] Плотніков В.В., Ярош Т.П., Марасанова О.В., 2012